Federated Learning (FL) is a machine learning approach that addresses privacy and data transfer costs by computing data at the source. It's particularly popular for Edge and IoT applications where the aggregator server of FL is in resource-capped edge data centers for reducing communication costs. Existing cloud-based aggregator solutions are resource-inefficient and expensive at the Edge, leading to low scalability and high latency. To address these challenges, this study compares prior and new aggregation methodologies under the changing demands of IoT and Edge applications. This work is the first to propose an adaptive FL aggregator at the Edge, enabling users to manage the cost and efficiency trade-off. An extensive comparative analysis demonstrates that the design improves scalability by up to 4X, time efficiency by 8X, and reduces costs by more than 2X compared to extant cloud-based static methodologies.
In-context learning is a promising approach for online policy learning of offline reinforcement learning (RL) methods, which can be achieved at inference time without gradient optimization. However, this method is hindered by significant computational costs resulting from the gathering of large training trajectory sets and the need to train large Transformer models. We address this challenge by introducing an In-context Exploration-Exploitation (ICEE) algorithm, designed to optimize the efficiency of in-context policy learning. Unlike existing models, ICEE performs an exploration-exploitation trade-off at inference time within a Transformer model, without the need for explicit Bayesian inference. Consequently, ICEE can solve Bayesian optimization problems as efficiently as Gaussian process biased methods do, but in significantly less time. Through experiments in grid world environments, we demonstrate that ICEE can learn to solve new RL tasks using only tens of episodes, marking a substantial improvement over the hundreds of episodes needed by the previous in-context learning method.
The use of reinforcement learning (RL) in practical applications requires considering sub-optimal outcomes, which depend on the agent's familiarity with the uncertain environment. Dynamically adjusting the level of epistemic risk over the course of learning can tactically achieve reliable optimal policy in safety-critical environments and tackle the sub-optimality of a static risk level. In this work, we introduce a novel framework, Distributional RL with Online Risk Adaption (DRL-ORA), which can quantify the aleatory and epistemic uncertainties compositely and dynamically select the epistemic risk levels via solving a total variation minimization problem online. The risk level selection can be efficiently achieved through grid search using a Follow-The-Leader type algorithm, and its offline oracle is related to "satisficing measure" (in the decision analysis community) under a special modification of the loss function. We show multiple classes of tasks where DRL-ORA outperforms existing methods that rely on either a fixed risk level or manually predetermined risk level adaption. Given the simplicity of our modifications, we believe the framework can be easily incorporated into most RL algorithm variants.
Context: Software of different functional categories, such as text processing vs. networking, has different profiles in terms of metrics like security and updates. Using popularity to compare e.g. Java vs. Python libraries might give a skewed perspective, as the categories of the most popular software vary from one ecosystem to the next. How can one compare libraries datasets across software ecosystems, when not even the category names are uniform among them? Objective: We study how to generate a language-agnostic categorisation of software by functional purpose, that enables cross-ecosystem studies of libraries datasets. This provides the functional fingerprint information needed for software metrics comparisons. Method: We designed and implemented a human-guided protocol to categorise libraries from software ecosystems. Category names mirror PyPI Topic classifiers, but the protocol is generic and can be applied to any ecosystem. We demonstrate it by categorising 256 Java/Maven libraries with severe security vulnerabilities. Results: The protocol allows three or more people to categorise any number of libraries. The categorisation produced is functional-oriented and language-agnostic. The Java/Maven dataset demonstration resulted in a majority of Internet-oriented libraries, coherent with its selection by severe vulnerabilities. To allow replication and updates, we make the dataset and the protocol individual steps available as open data. Conclusions: Libraries categorisation by functional purpose is feasible with our protocol, which produced the fingerprint of a 256-libraries Java dataset. While this was labour intensive, humans excel in the required inference tasks, so full automation of the process is not envisioned. However, results can provide the ground truth needed for machine learning in large-scale cross-ecosystem empirical studies.
Positive-unlabeled learning (PUL) aims at learning a binary classifier from only positive and unlabeled training data. Even though real-world applications often involve imbalanced datasets where the majority of examples belong to one class, most contemporary approaches to PUL do not investigate performance in this setting, thus severely limiting their applicability in practice. In this work, we thus propose to tackle the issues of imbalanced datasets and model calibration in a PUL setting through an uncertainty-aware pseudo-labeling procedure (PUUPL): by boosting the signal from the minority class, pseudo-labeling expands the labeled dataset with new samples from the unlabeled set, while explicit uncertainty quantification prevents the emergence of harmful confirmation bias leading to increased predictive performance. Within a series of experiments, PUUPL yields substantial performance gains in highly imbalanced settings while also showing strong performance in balanced PU scenarios across recent baselines. We furthermore provide ablations and sensitivity analyses to shed light on PUUPL's several ingredients. Finally, a real-world application with an imbalanced dataset confirms the advantage of our approach.
The Makeham term is a crucial element in mortality modeling, representing a constant additive hazard that addresses background mortality factors unrelated to aging. Widely used in mortality analysis, this term enables the capture of risks not linked to age-related decline. This paper aims to explore the relationship between Makeham mortality models and competing risk frameworks, investigating how Makeham models can be analyzed within the context of competing risks. It provides insights into the mathematical properties, interpretation, and applicability of Makeham models in modeling mortality risks associated with various causes of death. Additionally, it demonstrates that competing risk models can be represented as mixture models, enhancing understanding of mortality dynamics. The contribution lies in showing that Makeham mortality models, when represented as mixtures, offer a straightforward specification that can accommodate unobserved heterogeneity and distinguish between senescent and extrinsic mortality. By expressing Makeham models as a convex combination of probability distributions, the paper allows the estimation of premature mortality profiles, particularly at older ages, where most deaths are assumed to be senescent. It also facilitates the estimation of senescent mortality, which is crucial for studying the aging process.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.