亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper a fourth order finite difference ghost point method for the Poisson equation on regular Cartesian mesh is presented. The method can be considered the high order extension of the second ghost method introduced earlier by the authors. Three different discretizations are considered, which differ in the stencil that discretizes the Laplacian and the source term. It is shown that only two of them provide a stable method. The accuracy of such stable methods are numerically verified on several test problems.

相關內容

We present an extension of the linear sampling method for solving the sound-soft inverse scattering problem in two dimensions with data generated by randomly distributed small scatterers. The theoretical justification of our novel sampling method is based on a rigorous asymptotic model, a modified Helmholtz--Kirchhoff identity, and our previous work on the linear sampling method for random sources. Our numerical implementation incorporates boundary elements, Singular Value Decomposition, Tikhonov regularization, and Morozov's discrepancy principle. We showcase the robustness and accuracy of our algorithms with a series of numerical experiments.

We prove that the Weihrauch degree of the problem of finding a bad sequence in a non-well quasi order ($\mathsf{BS}$) is strictly above that of finding a descending sequence in an ill-founded linear order ($\mathsf{DS}$). This corrects our mistaken claim in arXiv:2010.03840, which stated that they are Weihrauch equivalent. We prove that K\"onig's lemma $\mathsf{KL}$ and the problem $\mathsf{wList}_{2^{\mathbb{N}},\leq\omega}$ of enumerating a given non-empty countable closed subset of $2^\mathbb{N}$ are not Weihrauch reducible to $\mathsf{DS}$ either, resolving two main open questions raised in arXiv:2010.03840.

Generalized linear models (GLMs) arguably represent the standard approach for statistical regression beyond the Gaussian likelihood scenario. When Bayesian formulations are employed, the general absence of a tractable posterior distribution has motivated the development of deterministic approximations, which are generally more scalable than sampling techniques. Among them, expectation propagation (EP) showed extreme accuracy, usually higher than many variational Bayes solutions. However, the higher computational cost of EP posed concerns about its practical feasibility, especially in high-dimensional settings. We address these concerns by deriving a novel efficient formulation of EP for GLMs, whose cost scales linearly in the number of covariates p. This reduces the state-of-the-art O(p^2 n) per-iteration computational cost of the EP routine for GLMs to O(p n min{p,n}), with n being the sample size. We also show that, for binary models and log-linear GLMs approximate predictive means can be obtained at no additional cost. To preserve efficient moment matching for count data, we propose employing a combination of log-normal Laplace transform approximations, avoiding numerical integration. These novel results open the possibility of employing EP in settings that were believed to be practically impossible. Improvements over state-of-the-art approaches are illustrated both for simulated and real data. The efficient EP implementation is available at //github.com/niccoloanceschi/EPglm.

We explore theoretical aspects of boundary conditions for lattice Boltzmann methods, focusing on a toy two-velocities scheme. By mapping lattice Boltzmann schemes to Finite Difference schemes, we facilitate rigorous consistency and stability analyses. We develop kinetic boundary conditions for inflows and outflows, highlighting the trade-off between accuracy and stability, which we successfully overcome. Stability is assessed using GKS (Gustafsson, Kreiss, and Sundstr{\"o}m) analysis and -- when this approach fails on coarse meshes -- spectral and pseudo-spectral analyses of the scheme's matrix that explain effects germane to low resolutions.

We present a space-time continuous-Galerkin finite element method for solving incompressible Navier-Stokes equations. To ensure stability of the discrete variational problem, we apply ideas from the variational multi-scale method. The finite element problem is posed on the ``full" space-time domain, considering time as another dimension. We provide a rigorous analysis of the stability and convergence of the stabilized formulation. And finally, we apply this method on two benchmark problems in computational fluid dynamics, namely, lid-driven cavity flow and flow past a circular cylinder. We validate the current method with existing results from literature and show that very large space-time blocks can be solved using our approach.

We derive the Alternating-Direction Implicit (ADI) method based on a commuting operator split and apply the results to the continuous time algebraic Lyapunov equation with low-rank constant term and approximate solution. Previously, it has been mandatory to start the low-rank ADI (LR-ADI) with an all-zero initial value. Our approach retains the known efficient iteration schemes of low-rank increments and residual to arbitrary low-rank initial values for the LR-ADI method. We further generalize some of the known properties of the LR-ADI for Lyapunov equations to larger classes of algorithms or problems. We investigate the performance of arbitrary initial values using two outer iterations in which LR-ADI is typically called. First, we solve an algebraic Riccati equation with the Newton method. Second, we solve a differential Riccati equation with a first-order Rosenbrock method. Numerical experiments confirm that the proposed new initial value of the alternating-directions implicit (ADI) can lead to a significant reduction in the total number of ADI steps, while also showing a 17% and 8x speed-up over the zero initial value for the two equation types, respectively.

We study the dual of Philo's shortest line segment problem which asks to find the optimal line segments passing through two given points, with a common endpoint, and with the other endpoints on a given line. The provided solution uses multivariable calculus and geometry methods. Interesting connections with the angle bisector of the triangle are explored. A generalization of the problem using $L_p$ ($p\ge 1$) norm is proposed. Particular case $p=\infty$ is studied. Interesting case $p=2$ is proposed as an open problem and related property of a symedian of a triangle is conjectured.

The presented methodology for testing the goodness-of-fit of an Autoregressive Hilbertian model (ARH(1) model) provides an infinite-dimensional formulation of the approach proposed in Koul and Stute (1999), based on empirical process marked by residuals. Applying a central and functional central limit result for Hilbert-valued martingale difference sequences, the asymptotic behavior of the formulated H-valued empirical process, also indexed by H, is obtained under the null hypothesis. The limiting process is H-valued generalized (i.e., indexed by H) Wiener process, leading to an asymptotically distribution free test. Consistency of the test is also proved. The case of misspecified autocorrelation operator of the ARH(1) process is addressed. The asymptotic equivalence in probability, uniformly in the norm of H, of the empirical processes formulated under known and unknown autocorrelation operator is obtained. Beyond the Euclidean setting, this approach allows to implement goodness of fit testing in the context of manifold and spherical functional autoregressive processes.

Prediction of climate tipping is challenging due to the lack of recent observation of actual climate tipping. Despite many previous efforts to accurately predict the existence and timing of climate tippings under specific climate scenarios, the predictability of climate tipping, the necessary conditions under which climate tipping can be predicted, has yet to be explored. In this study, the predictability of climate tipping is analyzed by Observation System Simulation Experiment (OSSE), in which the value of observation for prediction is assessed through the idealized experiment of data assimilation, using a simplified dynamic vegetation model and an Atlantic Meridional Overturning Circulation (AMOC) two box model. We find that the ratio of internal variability to observation error, or signal-to-noise ratio, should be large enough to accurately predict climate tippings. When observation can accurately resolve the internal variability of the system, assimilating these observations into process-based models can effectively improve the skill of predicting climate tippings. Our quantitative estimation of required observation accuracy to predict climate tipping implies that the existing observation network is not always sufficient to accurately project climate tipping.

Weakly Supervised Semantic Segmentation (WSSS) employs weak supervision, such as image-level labels, to train the segmentation model. Despite the impressive achievement in recent WSSS methods, we identify that introducing weak labels with high mean Intersection of Union (mIoU) does not guarantee high segmentation performance. Existing studies have emphasized the importance of prioritizing precision and reducing noise to improve overall performance. In the same vein, we propose ORANDNet, an advanced ensemble approach tailored for WSSS. ORANDNet combines Class Activation Maps (CAMs) from two different classifiers to increase the precision of pseudo-masks (PMs). To further mitigate small noise in the PMs, we incorporate curriculum learning. This involves training the segmentation model initially with pairs of smaller-sized images and corresponding PMs, gradually transitioning to the original-sized pairs. By combining the original CAMs of ResNet-50 and ViT, we significantly improve the segmentation performance over the single-best model and the naive ensemble model, respectively. We further extend our ensemble method to CAMs from AMN (ResNet-like) and MCTformer (ViT-like) models, achieving performance benefits in advanced WSSS models. It highlights the potential of our ORANDNet as a final add-on module for WSSS models.

北京阿比特科技有限公司