Multiple robots could perceive a scene (e.g., detect objects) collaboratively better than individuals, although easily suffer from adversarial attacks when using deep learning. This could be addressed by the adversarial defense, but its training requires the often-unknown attacking mechanism. Differently, we propose ROBOSAC, a novel sampling-based defense strategy generalizable to unseen attackers. Our key idea is that collaborative perception should lead to consensus rather than dissensus in results compared to individual perception. This leads to our hypothesize-and-verify framework: perception results with and without collaboration from a random subset of teammates are compared until reaching a consensus. In such a framework, more teammates in the sampled subset often entail better perception performance but require longer sampling time to reject potential attackers. Thus, we derive how many sampling trials are needed to ensure the desired size of an attacker-free subset, or equivalently, the maximum size of such a subset that we can successfully sample within a given number of trials. We validate our method on the task of collaborative 3D object detection in autonomous driving scenarios.
Visual localization is the task of estimating the camera pose from which a given image was taken and is central to several 3D computer vision applications. With the rapid growth in the popularity of AR/VR/MR devices and cloud-based applications, privacy issues are becoming a very important aspect of the localization process. Existing work on privacy-preserving localization aims to defend against an attacker who has access to a cloud-based service. In this paper, we show that an attacker can learn about details of a scene without any access by simply querying a localization service. The attack is based on the observation that modern visual localization algorithms are robust to variations in appearance and geometry. While this is in general a desired property, it also leads to algorithms localizing objects that are similar enough to those present in a scene. An attacker can thus query a server with a large enough set of images of objects, \eg, obtained from the Internet, and some of them will be localized. The attacker can thus learn about object placements from the camera poses returned by the service (which is the minimal information returned by such a service). In this paper, we develop a proof-of-concept version of this attack and demonstrate its practical feasibility. The attack does not place any requirements on the localization algorithm used, and thus also applies to privacy-preserving representations. Current work on privacy-preserving representations alone is thus insufficient.
When autonomous vehicles are deployed on public roads, they will encounter countless and diverse driving situations. Many manually designed driving policies are difficult to scale to the real world. Fortunately, reinforcement learning has shown great success in many tasks by automatic trial and error. However, when it comes to autonomous driving in interactive dense traffic, RL agents either fail to learn reasonable performance or necessitate a large amount of data. Our insight is that when humans learn to drive, they will 1) make decisions over the high-level skill space instead of the low-level control space and 2) leverage expert prior knowledge rather than learning from scratch. Inspired by this, we propose ASAP-RL, an efficient reinforcement learning algorithm for autonomous driving that simultaneously leverages motion skills and expert priors. We first parameterized motion skills, which are diverse enough to cover various complex driving scenarios and situations. A skill parameter inverse recovery method is proposed to convert expert demonstrations from control space to skill space. A simple but effective double initialization technique is proposed to leverage expert priors while bypassing the issue of expert suboptimality and early performance degradation. We validate our proposed method on interactive dense-traffic driving tasks given simple and sparse rewards. Experimental results show that our method can lead to higher learning efficiency and better driving performance relative to previous methods that exploit skills and priors differently. Code is open-sourced to facilitate further research.
Data mining focuses on discovering interesting, non-trivial and meaningful information from large datasets. Data clustering is one of the unsupervised and descriptive data mining task which group data based on similarity features and physically stored together. As a partitioning clustering method, K-means is widely used due to its simplicity and easiness of implementation. But this method has limitations such as local optimal convergence and initial point sensibility. Due to these impediments, nature inspired Swarm based algorithms such as Artificial Bee Colony Algorithm, Ant Colony Optimization, Firefly Algorithm, Bat Algorithm and etc. are used for data clustering to cope with larger datasets with lack and inconsistency of data. In some cases, those algorithms are used with traditional approaches such as K-means as hybrid approaches to produce better results. This paper reviews the performances of these new approaches and compares which is best for certain problematic situation.
Closing the domain gap between training and deployment and incorporating multiple sensor modalities are two challenging yet critical topics for self-driving. Existing work only focuses on single one of the above topics, overlooking the simultaneous domain and modality shift which pervasively exists in real-world scenarios. A model trained with multi-sensor data collected in Europe may need to run in Asia with a subset of input sensors available. In this work, we propose DualCross, a cross-modality cross-domain adaptation framework to facilitate the learning of a more robust monocular bird's-eye-view (BEV) perception model, which transfers the point cloud knowledge from a LiDAR sensor in one domain during the training phase to the camera-only testing scenario in a different domain. This work results in the first open analysis of cross-domain cross-sensor perception and adaptation for monocular 3D tasks in the wild. We benchmark our approach on large-scale datasets under a wide range of domain shifts and show state-of-the-art results against various baselines.
Interactive analysis systems provide efficient and accessible means by which users of varying technical experience can comfortably manipulate and analyze data using interactive widgets. Widgets are elements of interaction within a user interface (e.g. scrollbar, button, etc). Interactions with these widgets produce database queries whose results determine the subsequent changes made to the current visualization made by the user. In this paper, we present a tool that extends IDEBench to ingest visualization interfaces and a dataset, and estimate the expected database load that would be generated by real users. Our tool analyzes the interactive capabilities of the visualization and creates the queries that support the various interactions. We began with a proof of concept implementation of every interaction widget, which led us to define three distinct sets of query templates that can support all interactions. We then show that these templates can be layered to imitate various interfaces and tailored to any dataset. Secondly, we simulate how users would interact with the proposed interface and report on the strain that such use would place on the database management system.
Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.
Image retrieval plays an important role in the Internet world. Usually, the core parts of mainstream visual retrieval systems include an online service of the embedding model and a large-scale vector database. For traditional model upgrades, the old model will not be replaced by the new one until the embeddings of all the images in the database are re-computed by the new model, which takes days or weeks for a large amount of data. Recently, backward-compatible training (BCT) enables the new model to be immediately deployed online by making the new embeddings directly comparable to the old ones. For BCT, improving the compatibility of two models with less negative impact on retrieval performance is the key challenge. In this paper, we introduce AdvBCT, an Adversarial Backward-Compatible Training method with an elastic boundary constraint that takes both compatibility and discrimination into consideration. We first employ adversarial learning to minimize the distribution disparity between embeddings of the new model and the old model. Meanwhile, we add an elastic boundary constraint during training to improve compatibility and discrimination efficiently. Extensive experiments on GLDv2, Revisited Oxford (ROxford), and Revisited Paris (RParis) demonstrate that our method outperforms other BCT methods on both compatibility and discrimination. The implementation of AdvBCT will be publicly available at //github.com/Ashespt/AdvBCT.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.