亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robot person following (RPF) is a crucial capability in human-robot interaction (HRI) applications, allowing a robot to persistently follow a designated person. In practical RPF scenarios, the person often be occluded by other objects or people. Consequently, it is necessary to re-identify the person when he/she re-appears within the robot's field of view. Previous person re-identification (ReID) approaches to person following rely on offline-trained features and short-term experiences. Such an approach i) has a limited capacity to generalize across scenarios; and ii) often fails to re-identify the person when his re-appearance is out of the learned domain represented by the short-term experiences. Based on this observation, in this work, we propose a ReID framework for RPF that leverages long-term experiences. The experiences are maintained by a loss-guided keyframe selection strategy, to enable online continual learning of the appearance model. Our experiments demonstrate that even in the presence of severe appearance changes and distractions from visually similar people, the proposed method can still re-identify the person more accurately than the state-of-the-art methods.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Multibody dynamics simulators are an important tool in many fields, including learning and control for robotics. However, many existing dynamics simulators suffer from inaccuracies when dealing with constrained mechanical systems due to unsuitable integrators with bad energy behavior and problematic constraint violations, for example for contact interactions. Variational integrators are numerical discretization methods that can reduce physical inaccuracies when simulating mechanical systems, and formulating the dynamics in maximal coordinates allows for easy and numerically robust incorporation of constraints such as kinematic loops or contacts. Therefore, this article derives a variational integrator for mechanical systems with equality and inequality constraints in maximal coordinates. Additionally, efficient graph-based sparsity-exploiting algorithms for solving the integrator are provided and implemented as an open-source simulator. The evaluation of the simulator shows improved physical accuracy due to the variational integrator and the advantages of the sparse solvers. Comparisons to minimal-coordinate algorithms show improved numerical robustness and application examples of a walking robot and an exoskeleton with explicit constraints demonstrate the necessity and capabilities of maximal coordinates.

As collaborative robot (Cobot) adoption in many sectors grows, so does the interest in integrating digital twins in human-robot collaboration (HRC). Virtual representations of physical systems (PT) and assets, known as digital twins, can revolutionize human-robot collaboration by enabling real-time simulation, monitoring, and control. In this article, we present a review of the state-of-the-art and our perspective on the future of digital twins (DT) in human-robot collaboration. We argue that DT will be crucial in increasing the efficiency and effectiveness of these systems by presenting compelling evidence and a concise vision of the future of DT in human-robot collaboration, as well as insights into the possible advantages and challenges associated with their integration.

Many important tasks are defined in terms of object. To generalize across these tasks, a reinforcement learning (RL) agent needs to exploit the structure that the objects induce. Prior work has either hard-coded object-centric features, used complex object-centric generative models, or updated state using local spatial features. However, these approaches have had limited success in enabling general RL agents. Motivated by this, we introduce "Feature-Attending Recurrent Modules" (FARM), an architecture for learning state representations that relies on simple, broadly applicable inductive biases for capturing spatial and temporal regularities. FARM learns a state representation that is distributed across multiple modules that each attend to spatiotemporal features with an expressive feature attention mechanism. We show that this improves an RL agent's ability to generalize across object-centric tasks. We study task suites in both 2D and 3D environments and find that FARM better generalizes compared to competing architectures that leverage attention or multiple modules.

For industrial learning-to-rank (LTR) systems, it is common that the output of a ranking model is modified, either as a results of post-processing logic that enforces business requirements, or as a result of unforeseen design flaws or bugs present in real-world production systems. This poses a challenge for deploying off-policy learning and evaluation methods, as these often rely on the assumption that rankings implied by the model's scores coincide with displayed items to the users. Further requirements for reliable offline evaluation are proper randomization and correct estimation of the propensities of displaying each item in any given position of the ranking, which are also impacted by the aforementioned post-processing. We investigate empirically how these scenarios impair off-policy evaluation for learning-to-rank models. We then propose a novel correction method based on the Birkhoff-von-Neumann decomposition that is robust to this type of post-processing. We obtain more accurate off-policy estimates in offline experiments, overcoming the problem of post-processed rankings. To the best of our knowledge this is the first study on the impact of real-world business rules on offline evaluation of LTR models.

Given imbalanced data, it is hard to train a good classifier using deep learning because of the poor generalization of minority classes. Traditionally, the well-known synthetic minority oversampling technique (SMOTE) for data augmentation, a data mining approach for imbalanced learning, has been used to improve this generalization. However, it is unclear whether SMOTE also benefits deep learning. In this work, we study why the original SMOTE is insufficient for deep learning, and enhance SMOTE using soft labels. Connecting the resulting soft SMOTE with Mixup, a modern data augmentation technique, leads to a unified framework that puts traditional and modern data augmentation techniques under the same umbrella. A careful study within this framework shows that Mixup improves generalization by implicitly achieving uneven margins between majority and minority classes. We then propose a novel margin-aware Mixup technique that more explicitly achieves uneven margins. Extensive experimental results demonstrate that our proposed technique yields state-of-the-art performance on deep imbalanced classification while achieving superior performance on extremely imbalanced data. The code is open-sourced in our developed package //github.com/ntucllab/imbalanced-DL to foster future research in this direction.

Many practically relevant robot grasping problems feature a target object for which all grasps are occluded, e.g., by the environment. Single-shot grasp planning invariably fails in such scenarios. Instead, it is necessary to first manipulate the object into a configuration that affords a grasp. We solve this problem by learning a sequence of actions that utilize the environment to change the object's pose. Concretely, we employ hierarchical reinforcement learning to combine a sequence of learned parameterized manipulation primitives. By learning the low-level manipulation policies, our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment. Designing such a complex behavior analytically would be infeasible under uncontrolled conditions, as an analytic approach requires accurate physical modeling of the interaction and contact dynamics. In contrast, we learn a hierarchical policy model that operates directly on depth perception data, without the need for object detection, pose estimation, or manual design of controllers. We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace. Our method transfers to a real robot and is able to successfully complete the object picking task in 98\% of experimental trials.

Large language models(LLMs) exhibit excellent performance across a variety of tasks, but they come with significant computational and storage costs. Quantizing these models is an effective way to alleviate this issue. However, existing methods struggle to strike a balance between model accuracy and hardware efficiency. This is where we introduce AWEQ, a post-training method that requires no additional training overhead. AWEQ excels in both ultra-low-bit quantization and 8-bit weight and activation (W8A8) quantization. There is an observation that weight quantization is less challenging than activation quantization. AWEQ transfers the difficulty of activation quantization to weights using channel equalization, achieving a balance between the quantization difficulties of both, and thereby maximizing performance. We have further refined the equalization method to mitigate quantization bias error, ensuring the robustness of the model. Extensive experiments on popular models such as LLaMA and OPT demonstrate that AWEQ outperforms all existing post-training quantization methods for large models.

As many of us in the information retrieval (IR) research community know and appreciate, search is far from being a solved problem. Millions of people struggle with tasks on search engines every day. Often, their struggles relate to the intrinsic complexity of their task and the failure of search systems to fully understand the task and serve relevant results. The task motivates the search, creating the gap/problematic situation that searchers attempt to bridge/resolve and drives search behavior as they work through different task facets. Complex search tasks require more than support for rudimentary fact finding or re-finding. Research on methods to support complex tasks includes work on generating query and website suggestions, personalizing and contextualizing search, and developing new search experiences, including those that span time and space. The recent emergence of generative artificial intelligence (AI) and the arrival of assistive agents, or copilots, based on this technology, has the potential to offer further assistance to searchers, especially those engaged in complex tasks. There are profound implications from these advances for the design of intelligent systems and for the future of search itself. This article, based on a keynote by the author at the 2023 ACM SIGIR Conference, explores these issues and charts a course toward new horizons in information access guided by AI copilots.

Large language models (LLMs) are shown to possess a wealth of actionable knowledge that can be extracted for robot manipulation in the form of reasoning and planning. Despite the progress, most still rely on pre-defined motion primitives to carry out the physical interactions with the environment, which remains a major bottleneck. In this work, we aim to synthesize robot trajectories, i.e., a dense sequence of 6-DoF end-effector waypoints, for a large variety of manipulation tasks given an open-set of instructions and an open-set of objects. We achieve this by first observing that LLMs excel at inferring affordances and constraints given a free-form language instruction. More importantly, by leveraging their code-writing capabilities, they can interact with a vision-language model (VLM) to compose 3D value maps to ground the knowledge into the observation space of the agent. The composed value maps are then used in a model-based planning framework to zero-shot synthesize closed-loop robot trajectories with robustness to dynamic perturbations. We further demonstrate how the proposed framework can benefit from online experiences by efficiently learning a dynamics model for scenes that involve contact-rich interactions. We present a large-scale study of the proposed method in both simulated and real-robot environments, showcasing the ability to perform a large variety of everyday manipulation tasks specified in free-form natural language. Videos and code at //voxposer.github.io

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

北京阿比特科技有限公司