Uneven terrain necessarily transforms periodic walking into a non-periodic motion. As such, traditional stability analysis tools no longer adequately capture the ability of a bipedal robot to locomote in the presence of such disturbances. This motivates the need for analytical tools aimed at generalized notions of stability -- robustness. Towards this, we propose a novel definition of robustness, termed \emph{$\delta$-robustness}, to characterize the domain on which a nominal periodic orbit remains stable despite uncertain terrain. This definition is derived by treating perturbations in ground height as disturbances in the context of the input-to-state-stability (ISS) of the extended Poincar\'{e} map associated with a periodic orbit. The main theoretic result is the formulation of robust Lyapunov functions that certify $\delta$-robustness of periodic orbits. This yields an optimization framework for verifying $\delta$-robustness, which is demonstrated in simulation with a bipedal robot walking on uneven terrain.
Statistical models typically capture uncertainties in our knowledge of the corresponding real-world processes, however, it is less common for this uncertainty specification to capture uncertainty surrounding the values of the inputs to the model, which are often assumed known. We develop general modelling methodology with uncertain inputs in the context of the Bayes linear paradigm, which involves adjustment of second-order belief specifications over all quantities of interest only, without the requirement for probabilistic specifications. In particular, we propose an extension of commonly-employed second-order modelling assumptions to the case of uncertain inputs, with explicit implementation in the context of regression analysis, stochastic process modelling, and statistical emulation. We apply the methodology to a regression model for extracting aluminium by electrolysis, and emulation of the motivating epidemiological simulator chain to model the impact of an airborne infectious disease.
Dispersion relation reflects the dependence of wave frequency on its wave vector when the wave passes through certain material. It demonstrates the properties of this material and thus it is critical. However, dispersion relation reconstruction is very time consuming and expensive. To address this bottleneck, we propose in this paper an efficient dispersion relation reconstruction scheme based on global polynomial interpolation for the approximation of 2D photonic band functions. Our method relies on the fact that the band functions are piecewise analytic with respect to the wave vector in the first Brillouin zone. We utilize suitable sampling points in the first Brillouin zone at which we solve the eigenvalue problem involved in the band function calculation, and then employ Lagrange interpolation to approximate the band functions on the whole first Brillouin zone. Numerical results show that our proposed methods can significantly improve the computational efficiency.
While the transport of matter by wheeled vehicles or legged robots can be guaranteed in engineered landscapes like roads or rails, locomotion prediction in complex environments like collapsed buildings or crop fields remains challenging. Inspired by principles of information transmission which allow signals to be reliably transmitted over noisy channels, we develop a ``matter transport" framework demonstrating that non-inertial locomotion can be provably generated over ``noisy" rugose landscapes (heterogeneities on the scale of locomotor dimensions). Experiments confirm that sufficient spatial redundancy in the form of serially-connected legged robots leads to reliable transport on such terrain without requiring sensing and control. Further analogies from communication theory coupled to advances in gaits (coding) and sensor-based feedback control (error detection/correction) can lead to agile locomotion in complex terradynamic regimes.
Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem of counting the number of integer points inside $P$, assuming that $P$ is $\Delta$-modular, where the polytope $P$ is called $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the maximal number of vertices in $P$, where the maximum is taken by all r.h.s. vectors $b$. We show that our algorithm is more efficient for $\Delta$-modular problems than the approach of A. Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. Instead, we use the dynamic programming principle to compute its particular representation in the form of exponential series that depends on a single variable. We completely do not rely to the Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplices and similar polytopes that have $n + O(1)$ facets. As a special case, for any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular subset-sum problem.
Given a set of probability measures $\mathcal{P}$ representing an agent's knowledge on the elements of a sigma-algebra $\mathcal{F}$, we can compute upper and lower bounds for the probability of any event $A\in\mathcal{F}$ of interest. A procedure generating a new assessment of beliefs is said to constrict $A$ if the bounds on the probability of $A$ after the procedure are contained in those before the procedure. It is well documented that (generalized) Bayes' updating does not allow for constriction, for all $A\in\mathcal{F}$. In this work, we show that constriction can take place with and without evidence being observed, and we characterize these possibilities.
This paper introduces Enactive Artificial Intelligence (eAI) as an intersectional gender-inclusive stance towards AI. AI design is an enacted human sociocultural practice that reflects human culture and values. Unrepresentative AI design could lead to social marginalisation. Section 1, drawing from radical enactivism, outlines embodied cultural practices. In Section 2, explores how intersectional gender intertwines with technoscience as a sociocultural practice. Section 3 focuses on subverting gender norms in the specific case of Robot-Human Interaction in AI. Finally, Section 4 identifies four vectors of ethics: explainability, fairness, transparency, and auditability for adopting an intersectionality-inclusive stance in developing gender-inclusive AI and subverting existing gender norms in robot design.
This paper explores the capacity of additive Vertically-Drifted First Arrival Position (VDFAP) noise channels, which are emerging as a new paradigm for diffusive molecular communication. Analogous to the capacity of parallel Gaussian channels, the capacity of VDFAP noise channels is defined as the supremum of the mutual information between the input and output signals subject to an overall second-moment constraint on input distributions. Upper and lower bounds for this capacity are derived for the case of three spatial dimensions, based on an analysis of the characteristic function of the VDFAP distribution and an investigation of its stability properties. The results of this study contribute to the ongoing effort to understand the fundamental limits of molecular communication systems.
Recently, $(\beta,\gamma)$-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of $[-1,1]$, which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of $(\beta,\gamma)$-Chebyshev functions in the corresponding orthogonality interval.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.