We study sparse linear regression over a network of agents, modeled as an undirected graph (with no centralized node). The estimation problem is formulated as the minimization of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus constraint -- the latter being instrumental to obtain distributed solution methods. While penalty-based consensus methods have been extensively studied in the optimization literature, their statistical and computational guarantees in the high dimensional setting remain unclear. This work provides an answer to this open problem. Our contribution is two-fold. First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2$-loss, where $s$ is the sparsity value, $d$ is the ambient dimension, and $N$ is the total sample size in the network -- this matches centralized sample rates. Second, we show that the proximal-gradient algorithm applied to the penalized problem, which naturally leads to distributed implementations, converges linearly up to a tolerance of the order of the centralized statistical error -- the rate scales as $\mathcal{O}(d)$, revealing an unavoidable speed-accuracy dilemma.Numerical results demonstrate the tightness of the derived sample rate and convergence rate scalings.
This paper considers the distributed optimization problem where each node of a peer-to-peer network minimizes a finite sum of objective functions by communicating with its neighboring nodes. In sharp contrast to the existing literature where the fastest distributed algorithms converge either with a global linear or a local superlinear rate, we propose a distributed adaptive Newton (DAN) algorithm with a global quadratic convergence rate. Our key idea lies in the design of a finite-time set-consensus method with Polyak's adaptive stepsize. Moreover, we introduce a low-rank matrix approximation (LA) technique to compress the innovation of Hessian matrix so that each node only needs to transmit message of dimension $\mathcal{O}(p)$ (where $p$ is the dimension of decision vectors) per iteration, which is essentially the same as that of first-order methods. Nevertheless, the resulting DAN-LA converges to an optimal solution with a global superlinear rate. Numerical experiments on logistic regression problems are conducted to validate their advantages over existing methods.
Multi-block CCA constructs linear relationships explaining coherent variations across multiple blocks of data. We view the multi-block CCA problem as finding leading generalized eigenvectors and propose to solve it via a proximal gradient descent algorithm with $\ell_1$ constraint for high dimensional data. In particular, we use a decaying sequence of constraints over proximal iterations, and show that the resulting estimate is rate-optimal under suitable assumptions. Although several previous works have demonstrated such optimality for the $\ell_0$ constrained problem using iterative approaches, the same level of theoretical understanding for the $\ell_1$ constrained formulation is still lacking. We also describe an easy-to-implement deflation procedure to estimate multiple eigenvectors sequentially. We compare our proposals to several existing methods whose implementations are available on R CRAN, and the proposed methods show competitive performances in both simulations and a real data example.
In this work, we study a variant of nonnegative matrix factorization where we wish to find a symmetric factorization of a given input matrix into a sparse, Boolean matrix. Formally speaking, given $\mathbf{M}\in\mathbb{Z}^{m\times m}$, we want to find $\mathbf{W}\in\{0,1\}^{m\times r}$ such that $\| \mathbf{M} - \mathbf{W}\mathbf{W}^\top \|_0$ is minimized among all $\mathbf{W}$ for which each row is $k$-sparse. This question turns out to be closely related to a number of questions like recovering a hypergraph from its line graph, as well as reconstruction attacks for private neural network training. As this problem is hard in the worst-case, we study a natural average-case variant that arises in the context of these reconstruction attacks: $\mathbf{M} = \mathbf{W}\mathbf{W}^{\top}$ for $\mathbf{W}$ a random Boolean matrix with $k$-sparse rows, and the goal is to recover $\mathbf{W}$ up to column permutation. Equivalently, this can be thought of as recovering a uniformly random $k$-uniform hypergraph from its line graph. Our main result is a polynomial-time algorithm for this problem based on bootstrapping higher-order information about $\mathbf{W}$ and then decomposing an appropriate tensor. The key ingredient in our analysis, which may be of independent interest, is to show that such a matrix $\mathbf{W}$ has full column rank with high probability as soon as $m = \widetilde{\Omega}(r)$, which we do using tools from Littlewood-Offord theory and estimates for binary Krawtchouk polynomials.
Bulk synchronous parallel (BSP) is the de-facto paradigm for distributed DNN training in today's production clusters. However, due to the global synchronization nature, its performance can be significantly influenced by network bottlenecks caused by either static topology heterogeneity or dynamic bandwidth contentions. Existing solutions, either system-level optimizations strengthening BSP (e.g., Ring or Hierarchical All-reduce) or algorithmic optimizations replacing BSP (e.g., ASP or SSP, which relax the global barriers), do not completely solve the problem, as they may still suffer from communication inefficiency or risk convergence inaccuracy. In this paper, we present a novel divide-and-shuffle synchronization (DS-Sync) to realize communication efficiency without sacrificing convergence accuracy for distributed DNN training. At its heart, by taking into account the network bottlenecks, DS-Sync improves communication efficiency by dividing workers into non-overlap groups to synchronize independently in a bottleneck-free manner. Meanwhile, it maintains convergence accuracy by iteratively shuffling workers among different groups to ensure a global consensus. We theoretically prove that DS-Sync converges properly in non-convex and smooth conditions like DNN. We further implement DS-Sync and integrate it with PyTorch, and our testbed experiments show that DS-Sync can achieve up to $94\%$ improvements on the end-to-end training time with existing solutions while maintaining the same accuracy.
Existing distributed cooperative multi-agent reinforcement learning (MARL) frameworks usually assume undirected coordination graphs and communication graphs while estimating a global reward via consensus algorithms for policy evaluation. Such a framework may induce expensive communication costs and exhibit poor scalability due to requirement of global consensus. In this work, we study MARLs with directed coordination graphs, and propose a distributed RL algorithm where the local policy evaluations are based on local value functions. The local value function of each agent is obtained by local communication with its neighbors through a directed learning-induced communication graph, without using any consensus algorithm. A zeroth-order optimization (ZOO) approach based on parameter perturbation is employed to achieve gradient estimation. By comparing with existing ZOO-based RL algorithms, we show that our proposed distributed RL algorithm guarantees high scalability. A distributed resource allocation example is shown to illustrate the effectiveness of our algorithm.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.