亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Benchmark sets are extremely important for evaluating and developing global optimization algorithms and related solvers. A new test set named PCC benchmark is proposed especially for optimization problems of nonlinear curve fitting for the first time, with the aspiration of helping developers to investigate and compare the performance of different global optimization solvers, as well as more effective optimization algorithms could be developed. Compared with the well-known classical nonlinear curve fitting benchmark set given by the National Institute of Standards and Technology (NIST) of USA, the most distinguishable features of the PCC benchmark are small problem dimensions, unconstrained with free search domain and high level of difficulty for obtaining global optimization solutions, which make the PCC benchmark be not only suitable for validating the effectiveness of different global optimization algorithms, but also more ideal for verifying and comparing various related solvers. Seven of the world's leading global optimization solvers, including Baron, Antigone, Couenne, Lingo, Scip, Matlab-GA and 1stOpt, are employed to test NIST and PCC benchmark thoroughly in terms of both effectiveness and efficiency. The results showed that the NIST benchmark is relatively simple and not suitable for global optimization testing, meanwhile the PCC benchmark is a unique, challenging and effective test dataset for global optimization.

相關內容

We present a new adaptive algorithm for learning discrete distributions under distribution drift. In this setting, we observe a sequence of independent samples from a discrete distribution that is changing over time, and the goal is to estimate the current distribution. Since we have access to only a single sample for each time step, a good estimation requires a careful choice of the number of past samples to use. To use more samples, we must resort to samples further in the past, and we incur a drift error due to the bias introduced by the change in distribution. On the other hand, if we use a small number of past samples, we incur a large statistical error as the estimation has a high variance. We present a novel adaptive algorithm that can solve this trade-off without any prior knowledge of the drift. Unlike previous adaptive results, our algorithm characterizes the statistical error using data-dependent bounds. This technicality enables us to overcome the limitations of the previous work that require a fixed finite support whose size is known in advance and that cannot change over time. Additionally, we can obtain tighter bounds depending on the complexity of the drifting distribution, and also consider distributions with infinite support.

We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization

We propose an integrated behavior and motion planning framework for the automated lane-merging problem. The behavior planner combines search-based planning with game theory to model the interaction between vehicles and select multi-vehicle trajectories. Inspired by human drivers, we model the lane-merging problem as a gap selection process. To overcome the challenge of multi-modal driving behavior exhibited by the surrounding vehicles, we formulate the trajectory selection as a matrix game and compute some equilibrium solutions. In practice, however, the surrounding vehicles might deviate from the computed equilibrium trajectories. Thus, we introduce a branch model predictive control (BMPC) framework to account for the uncertain behavior modes of the surrounding vehicles. A tailored numerical solver is developed to enhance computational efficiency by leveraging the tree structure inherent in BMPC. Finally, we validate our proposed integrated planner using real traffic data and demonstrate its effectiveness in handling interactions in dense traffic scenarios.

There is an urgent need to incorporate the perspectives of culturally diverse groups into AI developments. We present a novel conceptual framework for research that aims to expand, reimagine, and reground mainstream visions of AI using independent and interdependent cultural models of the self and the environment. Two survey studies support this framework and provide preliminary evidence that people apply their cultural models when imagining their ideal AI. Compared with European American respondents, Chinese respondents viewed it as less important to control AI and more important to connect with AI, and were more likely to prefer AI with capacities to influence. Reflecting both cultural models, findings from African American respondents resembled both European American and Chinese respondents. We discuss study limitations and future directions and highlight the need to develop culturally responsive and relevant AI to serve a broader segment of the world population.

Emotion recognition in conversation (ERC) is a crucial task in natural language processing and affective computing. This paper proposes MultiDAG+CL, a novel approach for Multimodal Emotion Recognition in Conversation (ERC) that employs Directed Acyclic Graph (DAG) to integrate textual, acoustic, and visual features within a unified framework. The model is enhanced by Curriculum Learning (CL) to address challenges related to emotional shifts and data imbalance. Curriculum learning facilitates the learning process by gradually presenting training samples in a meaningful order, thereby improving the model's performance in handling emotional variations and data imbalance. Experimental results on the IEMOCAP and MELD datasets demonstrate that the MultiDAG+CL models outperform baseline models. We release the code for MultiDAG+CL and experiments: //github.com/vanntc711/MultiDAG-CL

Providing emotional support through dialogue systems is becoming increasingly important in today's world, as it can support both mental health and social interactions in many conversation scenarios. Previous works have shown that using persona is effective for generating empathetic and supportive responses. They have often relied on pre-provided persona rather than inferring them during conversations. However, it is not always possible to obtain a user persona before the conversation begins. To address this challenge, we propose PESS (Persona Extraction through Semantic Similarity), a novel framework that can automatically infer informative and consistent persona from dialogues. We devise completeness loss and consistency loss based on semantic similarity scores. The completeness loss encourages the model to generate missing persona information, and the consistency loss guides the model to distinguish between consistent and inconsistent persona. Our experimental results demonstrate that high-quality persona information inferred by PESS is effective in generating emotionally supportive responses.

Dense retrieval methods have demonstrated promising performance in multilingual information retrieval, where queries and documents can be in different languages. However, dense retrievers typically require a substantial amount of paired data, which poses even greater challenges in multilingual scenarios. This paper introduces UMR, an Unsupervised Multilingual dense Retriever trained without any paired data. Our approach leverages the sequence likelihood estimation capabilities of multilingual language models to acquire pseudo labels for training dense retrievers. We propose a two-stage framework which iteratively improves the performance of multilingual dense retrievers. Experimental results on two benchmark datasets show that UMR outperforms supervised baselines, showcasing the potential of training multilingual retrievers without paired data, thereby enhancing their practicality. Our source code, data, and models are publicly available at //github.com/MiuLab/UMR

Mobile networks have increased spectral efficiency through advanced multiplexing strategies that are coordinated by base stations (BS) in licensed spectrum. However, external interference on clients leads to significant performance degradation during dynamic (unlicensed) spectrum access (DSA). We introduce the notion of network tomography for DSA, whereby clients are transformed into spectrum sensors, whose joint access statistics are measured and used to account for interfering sources. Albeit promising, performing such tomography naively incurs an impractical overhead that scales exponentially with the multiplexing order of the strategies deployed -- which will only continue to grow with 5G/6G technologies. To this end, we propose a novel, scalable network tomography framework called NeTo-X that estimates joint client access statistics with just linear overhead, and forms a blue-print of the interference, thus enabling efficient DSA for future networks. NeTo-X's design incorporates intelligent algorithms that leverage multi-channel diversity and the spatial locality of interference impact on clients to accurately estimate the desired interference statistics from just pair-wise measurements of its clients. The merits of its framework are showcased in the context of resource management and jammer localization applications, where its performance significantly outperforms baseline approaches and closely approximates optimal performance at a scalable overhead.

Analyzing spatial varying effect is pivotal in geographic analysis. Yet, accurately capturing and interpreting this variability is challenging due to the complexity and non-linearity of geospatial data. Herein, we introduce an integrated framework that merges local spatial weighting scheme, Explainable Artificial Intelligence (XAI), and cutting-edge machine learning technologies to bridge the gap between traditional geographic analysis models and general machine learning approaches. Through tests on synthetic datasets, this framework is verified to enhance the interpretability and accuracy of predictions in both geographic regression and classification by elucidating spatial variability. It significantly boosts prediction precision, offering a novel approach to understanding spatial phenomena.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

北京阿比特科技有限公司