亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The next revolution of industry will turn the industries as well as the entire society into a human-centric shape. The human presence in industrial environment and the human participation in industrial processes will be magnified more than ever before. To cope with the emerging challenges raised by this revolution, 6G ambitions to bridge the three domains of digital information, physical assets and humans into one merged cyberphysical-human world. This proposes not only an unprecedented demand for digital twin solutions, but also new technical requirements. Especially, aiming at a human-centric industrial DT system, novel multi-sensory human-machine interfaces will play a key role in this paradigm shift.

相關內容

Readability assessment is the task of evaluating the reading difficulty of a given piece of text. Although research on computational approaches to readability assessment is now two decades old, there is not much work on synthesizing this research. This article is a brief survey of contemporary research on developing computational models for readability assessment. We identify the common approaches, discuss their shortcomings, and identify some challenges for the future. Where possible, we also connect computational research with insights from related work in other disciplines such as education and psychology.

Artificial intelligence (AI) and machine learning (ML) techniques have been increasingly used in several fields to improve performance and the level of automation. In recent years, this use has exponentially increased due to the advancement of high-performance computing and the ever increasing size of data. One of such fields is that of hardware design; specifically the design of digital and analog integrated circuits~(ICs), where AI/ ML techniques have been extensively used to address ever-increasing design complexity, aggressive time-to-market, and the growing number of ubiquitous interconnected devices (IoT). However, the security concerns and issues related to IC design have been highly overlooked. In this paper, we summarize the state-of-the-art in AL/ML for circuit design/optimization, security and engineering challenges, research in security-aware CAD/EDA, and future research directions and needs for using AI/ML for security-aware circuit design.

Multimodal AI advancements have presented people with powerful ways to create images from text. Recent work has shown that text-to-image generations are able to represent a broad range of subjects and artistic styles. However, translating text prompts into visual messages is difficult. In this paper, we address this challenge with Opal, a system that produces text-to-image generations for editorial illustration. Given an article text, Opal guides users through a structured search for visual concepts and provides pipelines allowing users to illustrate based on an article's tone, subjects, and intended illustration style. Our evaluation shows that Opal efficiently generates diverse sets of editorial illustrations, graphic assets, and concept ideas. Users with Opal were more efficient at generation and generated over two times more usable results than users without. We conclude on a discussion of how structured and rapid exploration can help users better understand the capabilities of human AI co-creative systems.

Cyber-physical systems (CPS) have been broadly deployed in safety-critical domains, such as automotive systems, avionics, medical devices, etc. In recent years, Artificial Intelligence (AI) has been increasingly adopted to control CPS. Despite the popularity of AI-enabled CPS, few benchmarks are publicly available. There is also a lack of deep understanding on the performance and reliability of AI-enabled CPS across different industrial domains. To bridge this gap, we initiate to create a public benchmark of industry-level CPS in seven domains and build AI controllers for them via state-of-the-art deep reinforcement learning (DRL) methods. Based on that, we further perform a systematic evaluation of these AI-enabled systems with their traditional counterparts to identify the current challenges and explore future opportunities. Our key findings include (1) AI controllers do not always outperform traditional controllers, (2) existing CPS testing techniques (falsification, specifically) fall short of analyzing AI-enabled CPS, and (3) building a hybrid system that strategically combines and switches between AI controllers and traditional controllers can achieve better performance across different domains. Our results highlight the need for new testing techniques for AI-enabled CPS and the need for more investigations into hybrid CPS systems to achieve optimal performance and reliability.

Given a multivariate big time series, can we detect anomalies as soon as they occur? Many existing works detect anomalies by learning how much a time series deviates away from what it should be in the reconstruction framework. However, most models have to cut the big time series into small pieces empirically since optimization algorithms cannot afford such a long series. The question is raised: do such cuts pollute the inherent semantic segments, like incorrect punctuation in sentences? Therefore, we propose a reconstruction-based anomaly detection method, MissGAN, iteratively learning to decode and encode naturally smooth time series in coarse segments, and finding out a finer segment from low-dimensional representations based on HMM. As a result, learning from multi-scale segments, MissGAN can reconstruct a meaningful and robust time series, with the help of adversarial regularization and extra conditional states. MissGAN does not need labels or only needs labels of normal instances, making it widely applicable. Experiments on industrial datasets of real water network sensors show our MissGAN outperforms the baselines with scalability. Besides, we use a case study on the CMU Motion dataset to demonstrate that our model can well distinguish unexpected gestures from a given conditional motion.

Extremely large antenna array (ELAA) is a common feature of several key candidate technologies for 6G, such as ultra-massive multiple-input-multiple-output (UM-MIMO), cell-free massive MIMO, reconfigurable intelligent surface (RIS), and terahertz communications. Since the number of antennas is very large for ELAA, near-field communications will become essential in 6G wireless networks. In this article, we systematically investigate the emerging near-field communication techniques. Firstly, the fundamental of near-field communications is explained, and the metric to determine the near-field ranges in typical communication scenarios is introduced. Then, we investigate recent studies on near-field communication techniques by classifying them into two categories, i.e., techniques addressing the challenges and those exploiting the potentials in near-field regions. Their principles, recent progress, pros and cons are discussed. More importantly, several open problems and future research directions for near-field communications are pointed out. We believe that this article would inspire more innovations for this important research topic of near-field communications for 6G.

The intelligent reflecting surface (IRS) alters the behavior of wireless media and, consequently, has potential to improve the performance and reliability of wireless systems such as communications and radar remote sensing. Recently, integrated sensing and communications (ISAC) has been widely studied as a means to efficiently utilize spectrum and thereby save cost and power. This article investigates the role of IRS in the future ISAC paradigms. While there is a rich heritage of recent research into IRS-assisted communications, the IRS-assisted radars and ISAC remain relatively unexamined. We discuss the putative advantages of IRS deployment, such as coverage extension, interference suppression, and enhanced parameter estimation, for both communications and radar. We introduce possible IRS-assisted ISAC scenarios with common and dedicated surfaces. The article provides an overview of related signal processing techniques and the design challenges, such as wireless channel acquisition, waveform design, and security.

Transformers have dominated the field of natural language processing, and recently impacted the computer vision area. In the field of medical image analysis, Transformers have also been successfully applied to full-stack clinical applications, including image synthesis/reconstruction, registration, segmentation, detection, and diagnosis. Our paper presents both a position paper and a primer, promoting awareness and application of Transformers in the field of medical image analysis. Specifically, we first overview the core concepts of the attention mechanism built into Transformers and other basic components. Second, we give a new taxonomy of various Transformer architectures tailored for medical image applications and discuss their limitations. Within this review, we investigate key challenges revolving around the use of Transformers in different learning paradigms, improving the model efficiency, and their coupling with other techniques. We hope this review can give a comprehensive picture of Transformers to the readers in the field of medical image analysis.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司