亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Third-party libraries (TPLs) have become an essential component of software, accelerating development and reducing maintenance costs. However, breaking changes often occur during the upgrades of TPLs and prevent client programs from moving forward. Semantic versioning (SemVer) has been applied to standardize the versions of releases according to compatibility, but not all releases follow SemVer compliance. Lots of work focuses on SemVer compliance in ecosystems such as Java and JavaScript beyond Golang (Go for short). Due to the lack of tools to detect breaking changes and dataset for Go, developers of TPLs do not know if breaking changes occur and affect client programs, and developers of client programs may hesitate to upgrade dependencies in terms of breaking changes. To bridge this gap, we conduct the first large-scale empirical study in the Go ecosystem to study SemVer compliance in terms of breaking changes and their impact. In detail, we purpose GoSVI (Go Semantic Versioning Insight) to detect breaking changes and analyze their impact by resolving identifiers in client programs and comparing their types with breaking changes. Moreover, we collect the first large-scale Go dataset with a dependency graph from GitHub, including 124K TPLs and 532K client programs. Based on the dataset, our results show that 86.3% of library upgrades follow SemVer compliance and 28.6% of no-major upgrades introduce breaking changes. Furthermore, the tendency to comply with SemVer has improved over time from 63.7% in 2018/09 to 92.2% in 2023/03. Finally, we find 33.3% of downstream client programs may be affected by breaking changes. These findings provide developers and users of TPLs with valuable insights to help make decisions related to SemVer.

相關內容

Explainability techniques are rapidly being developed to improve human-AI decision-making across various cooperative work settings. Consequently, previous research has evaluated how decision-makers collaborate with imperfect AI by investigating appropriate reliance and task performance with the aim of designing more human-centered computer-supported collaborative tools. Several human-centered explainable AI (XAI) techniques have been proposed in hopes of improving decision-makers' collaboration with AI; however, these techniques are grounded in findings from previous studies that primarily focus on the impact of incorrect AI advice. Few studies acknowledge the possibility for the explanations to be incorrect even if the AI advice is correct. Thus, it is crucial to understand how imperfect XAI affects human-AI decision-making. In this work, we contribute a robust, mixed-methods user study with 136 participants to evaluate how incorrect explanations influence humans' decision-making behavior in a bird species identification task taking into account their level of expertise and an explanation's level of assertiveness. Our findings reveal the influence of imperfect XAI and humans' level of expertise on their reliance on AI and human-AI team performance. We also discuss how explanations can deceive decision-makers during human-AI collaboration. Hence, we shed light on the impacts of imperfect XAI in the field of computer-supported cooperative work and provide guidelines for designers of human-AI collaboration systems.

In a recent seminal work, Bitansky and Shmueli (STOC '20) gave the first construction of a constant round zero-knowledge argument for NP secure against quantum attacks. However, their construction has several drawbacks compared to the classical counterparts. Specifically, their construction only achieves computational soundness, requires strong assumptions of quantum hardness of learning with errors (QLWE assumption) and the existence of quantum fully homomorphic encryption (QFHE), and relies on non-black-box simulation. In this paper, we resolve these issues at the cost of weakening the notion of zero-knowledge to what is called $\epsilon$-zero-knowledge. Concretely, we construct the following protocols: - We construct a constant round interactive proof for NP that satisfies statistical soundness and black-box $\epsilon$-zero-knowledge against quantum attacks assuming the existence of collapsing hash functions, which is a quantum counterpart of collision-resistant hash functions. Interestingly, this construction is just an adapted version of the classical protocol by Goldreich and Kahan (JoC '96) though the proof of $\epsilon$-zero-knowledge property against quantum adversaries requires novel ideas. - We construct a constant round interactive argument for NP that satisfies computational soundness and black-box $\epsilon$-zero-knowledge against quantum attacks only assuming the existence of post-quantum one-way functions. At the heart of our results is a new quantum rewinding technique that enables a simulator to extract a committed message of a malicious verifier while simulating verifier's internal state in an appropriate sense.

Carefully curated and annotated datasets are the foundation of machine learning, with particularly data-hungry deep neural networks forming the core of what is often called Artificial Intelligence (AI). Due to the massive success of deep learning applied to Earth Observation (EO) problems, the focus of the community has been largely on the development of ever-more sophisticated deep neural network architectures and training strategies largely ignoring the overall importance of datasets. For that purpose, numerous task-specific datasets have been created that were largely ignored by previously published review articles on AI for Earth observation. With this article, we want to change the perspective and put machine learning datasets dedicated to Earth observation data and applications into the spotlight. Based on a review of the historical developments, currently available resources are described and a perspective for future developments is formed. We hope to contribute to an understanding that the nature of our data is what distinguishes the Earth observation community from many other communities that apply deep learning techniques to image data, and that a detailed understanding of EO data peculiarities is among the core competencies of our discipline.

Generative Artificial Intelligence (GenAI) tools have become increasingly prevalent in software development, offering assistance to various managerial and technical project activities. Notable examples of these tools include OpenAIs ChatGPT, GitHub Copilot, and Amazon CodeWhisperer. Although many recent publications have explored and evaluated the application of GenAI, a comprehensive understanding of the current development, applications, limitations, and open challenges remains unclear to many. Particularly, we do not have an overall picture of the current state of GenAI technology in practical software engineering usage scenarios. We conducted a literature review and focus groups for a duration of five months to develop a research agenda on GenAI for Software Engineering. We identified 78 open Research Questions (RQs) in 11 areas of Software Engineering. Our results show that it is possible to explore the adoption of GenAI in partial automation and support decision-making in all software development activities. While the current literature is skewed toward software implementation, quality assurance and software maintenance, other areas, such as requirements engineering, software design, and software engineering education, would need further research attention. Common considerations when implementing GenAI include industry-level assessment, dependability and accuracy, data accessibility, transparency, and sustainability aspects associated with the technology. GenAI is bringing significant changes to the field of software engineering. Nevertheless, the state of research on the topic still remains immature. We believe that this research agenda holds significance and practical value for informing both researchers and practitioners about current applications and guiding future research.

The constant growth of DNNs makes them challenging to implement and run efficiently on traditional compute-centric architectures. Some accelerators have attempted to add more compute units and on-chip buffers to solve the memory wall problem without much success, and sometimes even worsening the issue since more compute units also require higher memory bandwidth. Prior works have proposed the design of memory-centric architectures based on the Near-Data Processing (NDP) paradigm. NDP seeks to break the memory wall by moving the computations closer to the memory hierarchy, reducing the data movements and their cost as much as possible. The 3D-stacked memory is especially appealing for DNN accelerators due to its high-density/low-energy storage and near-memory computation capabilities to perform the DNN operations massively in parallel. However, memory accesses remain as the main bottleneck for running modern DNNs efficiently. To improve the efficiency of DNN inference we present QeiHaN, a hardware accelerator that implements a 3D-stacked memory-centric weight storage scheme to take advantage of a logarithmic quantization of activations. In particular, since activations of FC and CONV layers of modern DNNs are commonly represented as powers of two with negative exponents, QeiHaN performs an implicit in-memory bit-shifting of the DNN weights to reduce memory activity. Only the meaningful bits of the weights required for the bit-shift operation are accessed. Overall, QeiHaN reduces memory accesses by 25\% compared to a standard memory organization. We evaluate QeiHaN on a popular set of DNNs. On average, QeiHaN provides $4.3x$ speedup and $3.5x$ energy savings over a Neurocube-like accelerator.

Image-based Reinforcement Learning is a practical yet challenging task. A major hurdle lies in extracting control-centric representations while disregarding irrelevant information. While approaches that follow the bisimulation principle exhibit the potential in learning state representations to address this issue, they still grapple with the limited expressive capacity of latent dynamics and the inadaptability to sparse reward environments. To address these limitations, we introduce ReBis, which aims to capture control-centric information by integrating reward-free control information alongside reward-specific knowledge. ReBis utilizes a transformer architecture to implicitly model the dynamics and incorporates block-wise masking to eliminate spatiotemporal redundancy. Moreover, ReBis combines bisimulation-based loss with asymmetric reconstruction loss to prevent feature collapse in environments with sparse rewards. Empirical studies on two large benchmarks, including Atari games and DeepMind Control Suit, demonstrate that ReBis has superior performance compared to existing methods, proving its effectiveness.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司