Humans continue to vastly outperform modern AI systems in their ability to parse and understand complex visual scenes flexibly. Attention and memory are two systems known to play a critical role in our ability to selectively maintain and manipulate behaviorally-relevant visual information to solve some of the most challenging visual reasoning tasks. Here, we present a novel architecture for visual reasoning inspired by the cognitive-science literature on visual reasoning, the Memory- and Attention-based (visual) REasOning (MAREO) architecture. MAREO instantiates an active-vision theory, which posits that the brain solves complex visual reasoning problems compositionally by learning to combine previously-learned elementary visual operations to form more complex visual routines. MAREO learns to solve visual reasoning tasks via sequences of attention shifts to route and maintain task-relevant visual information into a memory bank via a multi-head transformer module. Visual routines are then deployed by a dedicated reasoning module trained to judge various relations between objects in the scenes. Experiments on four types of reasoning tasks demonstrate MAREO's ability to learn visual routines in a robust and sample-efficient manner.
Representing a text as a graph for obtaining automatic text summarization has been investigated for over ten years. With the development of attention or Transformer on natural language processing (NLP), it is possible to make a connection between the graph and attention structure for a text. In this paper, an attention matrix between the sentences of the whole text is adopted as a weighted adjacent matrix of a fully connected graph of the text, which can be produced through the pre-training language model. The GCN is further applied to the text graph model for classifying each node and finding out the salient sentences from the text. It is demonstrated by the experimental results on two typical datasets that our proposed model can achieve a competitive result in comparison with sate-of-the-art models.
Video Question Answering (VideoQA) is the task of answering the natural language questions about a video. Producing an answer requires understanding the interplay across visual scenes in video and linguistic semantics in question. However, most leading VideoQA models work as black boxes, which make the visual-linguistic alignment behind the answering process obscure. Such black-box nature calls for visual explainability that reveals ``What part of the video should the model look at to answer the question?''. Only a few works present the visual explanations in a post-hoc fashion, which emulates the target model's answering process via an additional method. Nonetheless, the emulation struggles to faithfully exhibit the visual-linguistic alignment during answering. Instead of post-hoc explainability, we focus on intrinsic interpretability to make the answering process transparent. At its core is grounding the question-critical cues as the causal scene to yield answers, while rolling out the question-irrelevant information as the environment scene. Taking a causal look at VideoQA, we devise a self-interpretable framework, Equivariant and Invariant Grounding for Interpretable VideoQA (EIGV). Specifically, the equivariant grounding encourages the answering to be sensitive to the semantic changes in the causal scene and question; in contrast, the invariant grounding enforces the answering to be insensitive to the changes in the environment scene. By imposing them on the answering process, EIGV is able to distinguish the causal scene from the environment information, and explicitly present the visual-linguistic alignment. Extensive experiments on three benchmark datasets justify the superiority of EIGV in terms of accuracy and visual interpretability over the leading baselines.
Existing visual question answering methods tend to capture the spurious correlations from visual and linguistic modalities, and fail to discover the true casual mechanism that facilitates reasoning truthfully based on the dominant visual evidence and the correct question intention. Additionally, the existing methods usually ignore the complex event-level understanding in multi-modal settings that requires a strong cognitive capability of causal inference to jointly model cross-modal event temporality, causality, and dynamics. In this work, we focus on event-level visual question answering from a new perspective, i.e., cross-modal causal relational reasoning, by introducing causal intervention methods to mitigate the spurious correlations and discover the true causal structures for the integration of visual and linguistic modalities. Specifically, we propose a novel event-level visual question answering framework named Cross-Modal Causal RelatIonal Reasoning (CMCIR), to achieve robust casuality-aware visual-linguistic question answering. To uncover the causal structures for visual and linguistic modalities, the novel Causality-aware Visual-Linguistic Reasoning (CVLR) module is proposed to collaboratively disentangle the visual and linguistic spurious correlations via elaborately designed front-door and back-door causal intervention modules. To discover the fine-grained interactions between linguistic semantics and spatial-temporal representations, we build a novel Spatial-Temporal Transformer (STT) that builds the multi-modal co-occurrence interactions between visual and linguistic content. Extensive experiments on large-scale event-level urban dataset SUTD-TrafficQA and three benchmark real-world datasets TGIF-QA, MSVD-QA, and MSRVTT-QA demonstrate the effectiveness of our CMCIR for discovering visual-linguistic causal structures.
Referring video object segmentation aims to segment the object referred by a given language expression. Existing works typically require compressed video bitstream to be decoded to RGB frames before being segmented, which increases computation and storage requirements and ultimately slows the inference down. This may hamper its application in real-world computing resource limited scenarios, such as autonomous cars and drones. To alleviate this problem, in this paper, we explore the referring object segmentation task on compressed videos, namely on the original video data flow. Besides the inherent difficulty of the video referring object segmentation task itself, obtaining discriminative representation from compressed video is also rather challenging. To address this problem, we propose a multi-attention network which consists of dual-path dual-attention module and a query-based cross-modal Transformer module. Specifically, the dual-path dual-attention module is designed to extract effective representation from compressed data in three modalities, i.e., I-frame, Motion Vector and Residual. The query-based cross-modal Transformer firstly models the correlation between linguistic and visual modalities, and then the fused multi-modality features are used to guide object queries to generate a content-aware dynamic kernel and to predict final segmentation masks. Different from previous works, we propose to learn just one kernel, which thus removes the complicated post mask-matching procedure of existing methods. Extensive promising experimental results on three challenging datasets show the effectiveness of our method compared against several state-of-the-art methods which are proposed for processing RGB data. Source code is available at: //github.com/DexiangHong/MANet.
Recent studies on dense captioning and visual grounding in 3D have achieved impressive results. Despite developments in both areas, the limited amount of available 3D vision-language data causes overfitting issues for 3D visual grounding and 3D dense captioning methods. Also, how to discriminatively describe objects in complex 3D environments is not fully studied yet. To address these challenges, we present D3Net, an end-to-end neural speaker-listener architecture that can detect, describe and discriminate. Our D3Net unifies dense captioning and visual grounding in 3D in a self-critical manner. This self-critical property of D3Net also introduces discriminability during object caption generation and enables semi-supervised training on ScanNet data with partially annotated descriptions. Our method outperforms SOTA methods in both tasks on the ScanRefer dataset, surpassing the SOTA 3D dense captioning method by a significant margin.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.
Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.