We propose an assistive technology that helps individuals with Color Vision Deficiencies (CVD) to recognize/name colors. A dichromat's color perception is a reduced two-dimensional (2D) subset of a normal trichromat's three dimensional color (3D) perception, leading to confusion when visual stimuli that appear identical to the dichromat are referred to by different color names. Using our proposed system, CVD individuals can interactively induce distinct perceptual changes to originally confusing colors via a computational color space transformation. By combining their original 2D precepts for colors with the discriminative changes, a three dimensional color space is reconstructed, where the dichromat can learn to resolve color name confusions and accurately recognize colors. Our system is implemented as an Augmented Reality (AR) interface on smartphones, where users interactively control the rotation through swipe gestures and observe the induced color shifts in the camera view or in a displayed image. Through psychophysical experiments and a longitudinal user study, we demonstrate that such rotational color shifts have discriminative power (initially confusing colors become distinct under rotation) and exhibit structured perceptual shifts dichromats can learn with modest training. The AR App is also evaluated in two real-world scenarios (building with lego blocks and interpreting artistic works); users all report positive experience in using the App to recognize object colors that they otherwise could not.
Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% $\to$ 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of $+$7.8%, whilst Best-of-N selection with STICK attains $+$6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 $\to$ 0.256).
Despite their impressive capabilities, Multimodal Large Language Models (MLLMs) are susceptible to hallucinations, especially assertively fabricating content not present in the visual inputs. To address the aforementioned challenge, we follow a common cognitive process - when one's initial memory of critical on-sight details fades, it is intuitive to look at them a second time to seek a factual and accurate answer. Therefore, we introduce Memory-space Visual Retracing (MemVR), a novel hallucination mitigation paradigm that without the need for external knowledge retrieval or additional fine-tuning. In particular, we treat visual prompts as supplementary evidence to be reinjected into MLLMs via Feed Forward Network (FFN) as key-value memory, when the model is uncertain or even amnesic about question-relevant visual memories. Comprehensive experimental evaluations demonstrate that MemVR significantly mitigates hallucination issues across various MLLMs and excels in general benchmarks without incurring added time overhead, thus emphasizing its potential for widespread applicability.
The Image Captioning (IC) technique is widely used to describe images in natural language. Recently, some IC system testing methods have been proposed. However, these methods still rely on pre-annotated information and hence cannot really alleviate the oracle problem in testing. Besides, their method artificially manipulates objects, which may generate unreal images as test cases and thus lead to less meaningful testing results. Thirdly, existing methods have various requirements on the eligibility of source test cases, and hence cannot fully utilize the given images to perform testing. To tackle these issues, in this paper, we propose REIC to perform metamorphic testing for IC systems with some image-level reduction transformations like image cropping and stretching. Instead of relying on the pre-annotated information, REIC uses a localization method to align objects in the caption with corresponding objects in the image, and checks whether each object is correctly described or deleted in the caption after transformation. With the image-level reduction transformations, REIC does not artificially manipulate any objects and hence can avoid generating unreal follow-up images. Besides, it eliminates the requirement on the eligibility of source test cases in the metamorphic transformation process, as well as decreases the ambiguity and boosts the diversity among the follow-up test cases, which consequently enables testing to be performed on any test image and reveals more distinct valid violations. We employ REIC to test five popular IC systems. The results demonstrate that REIC can sufficiently leverage the provided test images to generate follow-up cases of good reality, and effectively detect a great number of distinct violations, without the need for any pre-annotated information.
Large Language Models (LLMs), known for their versatility in textual data, are increasingly being explored for their potential to enhance medical image segmentation, a crucial task for accurate diagnostic imaging. This study explores enhancing Vision Transformers (ViTs) for medical image segmentation by integrating pre-trained LLM transformer blocks. Our approach, which incorporates a frozen LLM transformer block into the encoder of a ViT-based model, leads to substantial improvements in segmentation performance across various medical imaging modalities. We propose a Hybrid Attention Mechanism that combines global and local feature learning with a Multi-Scale Fusion Block for aggregating features across different scales. The enhanced model shows significant performance gains, including an average Dice score increase from 0.74 to 0.79 and improvements in accuracy, precision, and the Jaccard Index. These results demonstrate the effectiveness of LLM-based transformers in refining medical image segmentation, highlighting their potential to significantly boost model accuracy and robustness. The source code and our implementation are available at: //bit.ly/3zf2CVs
With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4\% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.
Advancements in Natural Language Processing (NLP), have led to the emergence of Large Language Models (LLMs) such as GPT, Llama, Claude, and Gemini, which excel across a range of tasks but require extensive fine-tuning to align their outputs with human expectations. A widely used method for achieving this alignment is Reinforcement Learning from Human Feedback (RLHF), which, despite its success, faces challenges in accurately modelling human preferences. In this paper, we introduce GazeReward, a novel framework that integrates implicit feedback -- and specifically eye-tracking (ET) data -- into the Reward Model (RM). In addition, we explore how ET-based features can provide insights into user preferences. Through ablation studies we test our framework with different integration methods, LLMs, and ET generator models, demonstrating that our approach significantly improves the accuracy of the RM on established human preference datasets. This work advances the ongoing discussion on optimizing AI alignment with human values, exploring the potential of cognitive data for shaping future NLP research.
Current language models use subword-based tokenization algorithms like Byte Pair Encoding, which put their validity as models of linguistic representations into question. In this paper, we explore the potential of tokenization-free, phoneme- and grapheme-based language models. We demonstrate that small models based on the Llama architecture can achieve strong linguistic performance on standard syntactic and novel lexical/phonetic benchmarks when trained with character-level vocabularies. We further show that phoneme-based models without any graphemic biases almost match grapheme-based models in standard tasks and novel evaluations. Our findings suggest a promising direction for creating more linguistically plausible language models that are better suited for computational studies of language acquisition and processing.
Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable success in computer vision tasks. However, their deep architectures often lead to high computational redundancy, making them less suitable for resource-constrained environments, such as edge devices. This paper introduces ParFormer, a novel vision transformer that addresses this challenge by incorporating a Parallel Mixer and a Sparse Channel Attention Patch Embedding (SCAPE). By combining convolutional and attention mechanisms, ParFormer improves feature extraction. This makes spatial feature extraction more efficient and cuts down on unnecessary computation. The SCAPE module further reduces computational redundancy while preserving essential feature information during down-sampling. Experimental results on the ImageNet-1K dataset show that ParFormer-T achieves 78.9\% Top-1 accuracy with a high throughput on a GPU that outperforms other small models with 2.56$\times$ higher throughput than MobileViT-S, 0.24\% faster than FasterNet-T2, and 1.79$\times$ higher than EdgeNeXt-S. For edge device deployment, ParFormer-T excels with a throughput of 278.1 images/sec, which is 1.38 $\times$ higher than EdgeNeXt-S and 2.36$\times$ higher than MobileViT-S, making it highly suitable for real-time applications in resource-constrained settings. The larger variant, ParFormer-L, reaches 83.5\% Top-1 accuracy, offering a balanced trade-off between accuracy and efficiency, surpassing many state-of-the-art models. In COCO object detection, ParFormer-M achieves 40.7 AP for object detection and 37.6 AP for instance segmentation, surpassing models like ResNet-50, PVT-S and PoolFormer-S24 with significantly higher efficiency. These results validate ParFormer as a highly efficient and scalable model for both high-performance and resource-constrained scenarios, making it an ideal solution for edge-based AI applications.
Recent advances in Large Language Models (LLMs) have demonstrated their potential as autonomous agents across various tasks. One emerging application is the use of LLMs in playing games. In this work, we explore a practical problem for the gaming industry: Can LLMs be used to measure game difficulty? We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire. Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players. This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process. Based on our experiments, we also outline general principles and guidelines for incorporating LLMs into the game testing process.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.