Reinforcement learning can solve decision-making problems and train an agent to behave in an environment according to a predesigned reward function. However, such an approach becomes very problematic if the reward is too sparse and the agent does not come across the reward during the environmental exploration. The solution to such a problem may be in equipping the agent with an intrinsic motivation, which will provide informed exploration, during which the agent is likely to also encounter external reward. Novelty detection is one of the promising branches of intrinsic motivation research. We present Self-supervised Network Distillation (SND), a class of internal motivation algorithms based on the distillation error as a novelty indicator, where the target model is trained using self-supervised learning. We adapted three existing self-supervised methods for this purpose and experimentally tested them on a set of ten environments that are considered difficult to explore. The results show that our approach achieves faster growth and higher external reward for the same training time compared to the baseline models, which implies improved exploration in a very sparse reward environment.
This paper addresses the benefits of pooling data for shared learning in maintenance operations. We consider a set of systems subject to Poisson degradation that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs). We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. We leverage this decomposition to demonstrate that pooling data can lead to significant cost reductions compared to not pooling.
The design of automatic speech pronunciation assessment can be categorized into closed and open response scenarios, each with strengths and limitations. A system with the ability to function in both scenarios can cater to diverse learning needs and provide a more precise and holistic assessment of pronunciation skills. In this study, we propose a Multi-task Pronunciation Assessment model called MultiPA. MultiPA provides an alternative to Kaldi-based systems in that it has simpler format requirements and better compatibility with other neural network models. Compared with previous open response systems, MultiPA provides a wider range of evaluations, encompassing assessments at both the sentence and word-level. Our experimental results show that MultiPA achieves comparable performance when working in closed response scenarios and maintains more robust performance when directly used for open responses.
In a connection of many IoT devices that each collect data, normally training a machine learning model would involve transmitting the data to a central server which requires strict privacy rules. However, some owners are reluctant of availing their data out of the company due to data security concerns. Federated learning(FL) as a distributed machine learning approach performs training of a machine learning model on the device that gathered the data itself. In this scenario, data is not share over the network for training purpose. Fedavg as one of FL algorithms permits a model to be copied to participating devices during a training session. The devices could be chosen at random, and a device can be aborted. The resulting models are sent to the coordinating server and then average models from the devices that finished training. The process is repeated until a desired model accuracy is achieved. By doing this, FL approach solves the privacy problem for IoT/ IIoT devices that held sensitive data for the owners. In this paper, we leverage the benefits of FL and implemented Fedavg algorithm on a recent dataset that represent the modern IoT/ IIoT device networks. The results were almost the same as the centralized machine learning approach. We also evaluated some shortcomings of Fedavg such as unfairness that happens during the training when struggling devices do not participate for every stage of training. This inefficient training of local or global model could lead in a high number of false alarms in intrusion detection systems for IoT/IIoT gadgets developed using Fedavg. Hence, after evaluating the FedAv deep auto encoder with centralized deep auto encoder ML, we further proposed and designed a Fair Fedavg algorithm that will be evaluated in the future work.
The strategy of training the model from scratch in a specific language or domain serves two essential purposes: i) enhancing performance in the particular linguistic or domain context, and ii) ensuring effective tokenization. The main limitation inherent to this approach lies in the associated cost, which can reach six to seven-digit dollar values, depending on the model size and the number of parameters involved. The main solution to overcome the cost challenge is to rely on available pre-trained models, which, despite recent advancements such as the LLaMA and LLaMA-2 models, still demonstrate inefficiency for certain specific domain problems or prove ineffective in scenarios involving conversational memory resources, given the large number of tokens required to represent text. To overcome this issue, we present a methodology named Cabrita, which, as our research demonstrates, successfully addresses the performance and efficient tokenization problem, all at an affordable cost. We believe that this methodology can be applied to any transformer-like architecture model. To validate the study, we conducted continuous pre-training exclusively using Portuguese text on a 3-billion-parameter model known as OpenLLaMA, resulting in a model named openCabrita 3B. The openCabrita 3B also features a new tokenizer that results in a significant reduction in the number of tokens required to represent the text. In our assessment, for few-shot learning tasks, we achieved similar results with this 3B model compared to a traditional continuous pre-training approach as well as to 7B models English pre-trained models.
The development of fair and ethical AI systems requires careful consideration of bias mitigation, an area often overlooked or ignored. In this study, we introduce a novel and efficient approach for addressing biases called Targeted Data Augmentation (TDA), which leverages classical data augmentation techniques to tackle the pressing issue of bias in data and models. Unlike the laborious task of removing biases, our method proposes to insert biases instead, resulting in improved performance. To identify biases, we annotated two diverse datasets: a dataset of clinical skin lesions and a dataset of male and female faces. These bias annotations are published for the first time in this study, providing a valuable resource for future research. Through Counterfactual Bias Insertion, we discovered that biases associated with the frame, ruler, and glasses had a significant impact on models. By randomly introducing biases during training, we mitigated these biases and achieved a substantial decrease in bias measures, ranging from two-fold to more than 50-fold, while maintaining a negligible increase in the error rate.
This paper presents a novel, interdisciplinary study that leverages a Machine Learning (ML) assisted framework to explore the geometry of affine Deligne-Lusztig varieties (ADLV). The primary objective is to investigate the nonemptiness pattern, dimension and enumeration of irreducible components of ADLV. Our proposed framework demonstrates a recursive pipeline of data generation, model training, pattern analysis, and human examination, presenting an intricate interplay between ML and pure mathematical research. Notably, our data-generation process is nuanced, emphasizing the selection of meaningful subsets and appropriate feature sets. We demonstrate that this framework has a potential to accelerate pure mathematical research, leading to the discovery of new conjectures and promising research directions that could otherwise take significant time to uncover. We rediscover the virtual dimension formula and provide a full mathematical proof of a newly identified problem concerning a certain lower bound of dimension. Furthermore, we extend an open invitation to the readers by providing the source code for computing ADLV and the ML models, promoting further explorations. This paper concludes by sharing valuable experiences and highlighting lessons learned from this collaboration.
This paper examines the effectiveness of several forecasting methods for predicting inflation, focusing on aggregating disaggregated forecasts - also known in the literature as the bottom-up approach. Taking the Brazilian case as an application, we consider different disaggregation levels for inflation and employ a range of traditional time series techniques as well as linear and nonlinear machine learning (ML) models to deal with a larger number of predictors. For many forecast horizons, the aggregation of disaggregated forecasts performs just as well survey-based expectations and models that generate forecasts using the aggregate directly. Overall, ML methods outperform traditional time series models in predictive accuracy, with outstanding performance in forecasting disaggregates. Our results reinforce the benefits of using models in a data-rich environment for inflation forecasting, including aggregating disaggregated forecasts from ML techniques, mainly during volatile periods. Starting from the COVID-19 pandemic, the random forest model based on both aggregate and disaggregated inflation achieves remarkable predictive performance at intermediate and longer horizons.
High-level synthesis (HLS) refers to the automatic translation of a software program written in a high-level language into a hardware design. Modern HLS tools have moved away from the traditional approach of static (compile time) scheduling of operations to generating dynamic circuits that schedule operations at run time. Such circuits trade-off area utilisation for increased dynamism and throughput. However, existing lowering flows in dynamically scheduled HLS tools rely on conservative assumptions on their input program due to both the intermediate representations (IR) utilised as well as the lack of formal specifications on the translation into hardware. These assumptions cause suboptimal hardware performance. In this work, we lift these assumptions by proposing a new and efficient abstraction for hardware mapping; namely h-GSA, an extension of the Gated Single Static Assignment (GSA) IR. Using this abstraction, we propose a lowering flow that transforms GSA into h-GSA and maps h-GSA into dynamically scheduled hardware circuits. We compare the schedules generated by our approach to those by the state-of-the-art dynamic-scheduling HLS tool, Dynamatic, and illustrate the potential performance improvement from hardware mapping using the proposed abstraction.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.