Cryptography with quantum states exhibits a number of surprising and counterintuitive features. In a 2002 work, Barnum et al. argue that these features imply that digital signatures for quantum states are impossible (Barnum et al., FOCS 2002). In this work, we ask: can all forms of signing quantum data, even in a possibly weak sense, be completely ruled out? We give two results which shed significant light on this basic question. First, we prove an impossibility result for digital signatures for quantum data, which extends the result of Barnum et al. Specifically, we show that no nontrivial combination of correctness and security requirements can be fulfilled, beyond what is achievable simply by measuring the quantum message and then signing the outcome. In other words, only classical signature schemes exist. We then show a positive result: a quantum state can be signed with the same security guarantees as classically, provided that it is also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior performance to encypt-then-sign. Quantumly, it is far more interesting: it is the only signing method available. We develop "as-strong-as-classical" security definitions for quantum signcryption and give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to "upgrade" a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and CCA security.
Kleene algebra with tests (KAT) is a foundational equational framework for reasoning about programs, which has found applications in program transformations, networking and compiler optimizations, among many other areas. In his seminal work, Kozen proved that KAT subsumes propositional Hoare logic, showing that one can reason about the (partial) correctness of while programs by means of the equational theory of KAT. In this work, we investigate the support that KAT provides for reasoning about incorrectness, instead, as embodied by Ohearn's recently proposed incorrectness logic. We show that KAT cannot directly express incorrectness logic. The main reason for this limitation can be traced to the fact that KAT cannot express explicitly the notion of codomain, which is essential to express incorrectness triples. To address this issue, we study Kleene Algebra with Top and Tests (TopKAT), an extension of KAT with a top element. We show that TopKAT is powerful enough to express a codomain operation, to express incorrectness triples, and to prove all the rules of incorrectness logic sound. This shows that one can reason about the incorrectness of while-like programs by means of the equational theory of TopKAT.
A number of recent studies have proposed that linear representations are appropriate for solving nonlinear dynamical systems with quantum computers, which fundamentally act linearly on a wave function in a Hilbert space. Linear representations, such as the Koopman representation and Koopman von Neumann mechanics, have regained attention from the dynamical-systems research community. Here, we aim to present a unified theoretical framework, currently missing in the literature, with which one can compare and relate existing methods, their conceptual basis, and their representations. We also aim to show that, despite the fact that quantum simulation of nonlinear classical systems may be possible with such linear representations, a necessary projection into a feasible finite-dimensional space will in practice eventually induce numerical artifacts which can be hard to eliminate or even control. As a result a practical, reliable and accurate way to use quantum computation for solving general nonlinear dynamical systems is still an open problem.
In this paper we aim to investigate the mechanisms that guide text generation with pre-trained Transformer-based Language Models (TLMs). Grounded on the Product of Experts formulation by Hinton (1999), we describe a generative mechanism that exploits expert units which naturally exist in TLMs. Such units are responsible for detecting concepts in the input and conditioning text generation on such concepts. We describe how to identify expert units and how to activate them during inference in order to induce any desired concept in the generated output. We find that the activation of a surprisingly small amount of units is sufficient to steer text generation (as little as 3 units in a model with 345M parameters). While the objective of this work is to learn more about how TLMs work, we show that our method is effective for conditioning without fine-tuning or using extra parameters, even on fine-grained homograph concepts. Additionally, we show that our method can be used to correct gender bias present in the output of TLMs and achieves gender parity for all evaluated contexts. We compare our method with FUDGE and PPLM-BoW, and show that our approach is able to achieve gender parity at a lower perplexity. The proposed method is accessible to a wide audience thanks to its simplicity and minimal compute needs. The findings in this paper are a step forward in understanding the generative mechanisms of TLMs.
We show that Gottesman's semantics (GROUP22, 1998) for Clifford circuits based on the Heisenberg representation can be treated as a type system that can efficiently characterize a common subset of quantum programs. Our applications include (i) certifying whether auxiliary qubits can be safely disposed of, (ii) determining if a system is separable across a given bi-partition, (iii) checking the transversality of a gate with respect to a given stabilizer code, and (iv) typing post-measurement states for computational basis measurements. Further, this type system is extended to accommodate universal quantum computing by deriving types for the $T$-gate, multiply-controlled unitaries such as the Toffoli gate, and some gate injection circuits that use associated magic states. These types allow us to prove a lower bound on the number of $T$ gates necessary to perform a multiply-controlled $Z$ gate.
We prove a linearity theorem for an extension of linear logic with addition and multiplication by a scalar: the proofs of some propositions in this logic are linear in the algebraic sense. This work is part of a wider research program that aims at defining a logic whose proof language is a quantum programming language.
Quantum Annealing (QA) is a computational framework where a quantum system's continuous evolution is used to find the global minimum of an objective function over an unstructured search space. It can be seen as a general metaheuristic for optimization problems, including NP-hard ones if we allow an exponentially large running time. While QA is widely studied from a heuristic point of view, little is known about theoretical guarantees on the quality of the solutions obtained in polynomial time. In this paper we use a technique borrowed from theoretical physics, the Lieb-Robinson (LR) bound, and develop new tools proving that short, constant time quantum annealing guarantees constant factor approximations ratios for some optimization problems when restricted to bounded degree graphs. Informally, on bounded degree graphs the LR bound allows us to retrieve a (relaxed) locality argument, through which the approximation ratio can be deduced by studying subgraphs of bounded radius. We illustrate our tools on problems MaxCut and Maximum Independent Set for cubic graphs, providing explicit approximation ratios and the runtimes needed to obtain them. Our results are of similar flavor to the well-known ones obtained in the different but related QAOA (quantum optimization algorithms) framework. Eventually, we discuss theoretical and experimental arguments for further improvements.
We study expected runtimes for quantum programs. Inspired by recent work on probabilistic programs, we first define expected runtime as a generalisation of quantum weakest precondition. Then, we show that the expected runtime of a quantum program can be represented as the expectation of an observable (in physics). A method for computing the expected runtimes of quantum programs in finite-dimensional state spaces is developed. Several examples are provided as applications of this method, including computing the expected runtime of quantum Bernoulli Factory -- a quantum algorithm for generating random numbers. In particular, using our new method, an open problem of computing the expected runtime of quantum random walks introduced by Ambainis et al. (STOC 2001) is solved.
The classic Reinforcement Learning (RL) formulation concerns the maximization of a scalar reward function. More recently, convex RL has been introduced to extend the RL formulation to all the objectives that are convex functions of the state distribution induced by a policy. Notably, convex RL covers several relevant applications that do not fall into the scalar formulation, including imitation learning, risk-averse RL, and pure exploration. In classic RL, it is common to optimize an infinite trials objective, which accounts for the state distribution instead of the empirical state visitation frequencies, even though the actual number of trajectories is always finite in practice. This is theoretically sound since the infinite trials and finite trials objectives can be proved to coincide and thus lead to the same optimal policy. In this paper, we show that this hidden assumption does not hold in the convex RL setting. In particular, we show that erroneously optimizing the infinite trials objective in place of the actual finite trials one, as it is usually done, can lead to a significant approximation error. Since the finite trials setting is the default in both simulated and real-world RL, we believe shedding light on this issue will lead to better approaches and methodologies for convex RL, impacting relevant research areas such as imitation learning, risk-averse RL, and pure exploration among others.
We introduce a new approach for quantum linear algebra based on quantum subspace states and present three new quantum machine learning algorithms. The first is a quantum determinant sampling algorithm that samples from the distribution $\Pr[S]= det(X_{S}X_{S}^{T})$ for $|S|=d$ using $O(nd)$ gates and with circuit depth $O(d\log n)$. The state of art classical algorithm for the task requires $O(d^{3})$ operations \cite{derezinski2019minimax}. The second is a quantum singular value estimation algorithm for compound matrices $\mathcal{A}^{k}$, the speedup for this algorithm is potentially exponential. It decomposes a $\binom{n}{k}$ dimensional vector of order-$k$ correlations into a linear combination of subspace states corresponding to $k$-tuples of singular vectors of $A$. The third algorithm reduces exponentially the depth of circuits used in quantum topological data analysis from $O(n)$ to $O(\log n)$. Our basic tool are quantum subspace states, defined as $|Col(X)\rangle = \sum_{S\subset [n], |S|=d} det(X_{S}) |S\rangle$ for matrices $X \in \mathbb{R}^{n \times d}$ such that $X^{T} X = I_{d}$, that encode $d$-dimensional subspaces of $\mathbb{R}^{n}$. We develop two efficient state preparation techniques, the first using Givens circuits uses the representation of a subspace as a sequence of Givens rotations, while the second uses efficient implementations of unitaries $\Gamma(x) = \sum_{i} x_{i} Z^{\otimes (i-1)} \otimes X \otimes I^{n-i}$ with $O(\log n)$ depth circuits that we term Clifford loaders.
We present substantially generalized and improved quantum algorithms over prior work for inhomogeneous linear and nonlinear ordinary differential equations (ODE). In Berry et al., (2017), a quantum algorithm for a certain class of linear ODEs is given, where the matrix involved needs to be diagonalizable. The quantum algorithm for linear ODEs presented here extends to many classes of non-diagonalizable matrices. The algorithm here can also be exponentially faster for certain classes of diagonalizable matrices. Our linear ODE algorithm is then applied to nonlinear differential equations using Carleman linearization (an approach taken recently by us in Liu et al., (2021)). The improvement over that result is two-fold. First, we obtain an exponentially better dependence on error. This kind of logarithmic dependence on error has also been achieved by Xue et al., (2021), but only for homogeneous nonlinear equations. Second, the present algorithm can handle any sparse, invertible matrix (that models dissipation) if it has a negative log-norm (including non-diagonalizable matrices), whereas Liu et al., (2021) and Xue et al., (2021) additionally require normality.