Subset-Sum is an NP-complete problem where one must decide if a multiset of $n$ integers contains a subset whose elements sum to a target value $m$. The best known classical and quantum algorithms run in time $\tilde{O}(2^{n/2})$ and $\tilde{O}(2^{n/3})$, respectively, based on the well-known meet-in-the-middle technique. Here we introduce a novel dynamic programming data structure with applications to Subset-Sum and a number of variants, including Equal-Sums (where one seeks two disjoint subsets with the same sum), 2-Subset-Sum (a relaxed version of Subset-Sum where each item in the input set can be used twice in the summation), and Shifted-Sums, a generalization of both of these variants, where one seeks two disjoint subsets whose sums differ by some specified value. Given any modulus $p$, our data structure can be constructed in time $O(np)$, after which queries can be made in time $O(n)$ to the lists of subsets summing to a same value modulo $p$. We use this data structure to give new $\tilde{O}(2^{n/2})$ and $\tilde{O}(2^{n/3})$ classical and quantum algorithms for Subset-Sum, not based on the meet-in-the-middle method. We then use the data structure in combination with variable time amplitude amplification and a quantum pair finding algorithm, extending quantum element distinctness and claw finding algorithms to the multiple solutions case, to give an $O(2^{0.504n})$ quantum algorithm for Shifted-Sums, an improvement on the best known $O(2^{0.773n})$ classical running time. We also study Pigeonhole Equal-Sums and Pigeonhole Modular Equal-Sums, where the existence of a solution is guaranteed by the pigeonhole principle. For the former problem we give classical and quantum algorithms with running time $\tilde{O}(2^{n/2})$ and $\tilde{O}(2^{2n/5})$, respectively. For the more general modular problem we give a classical algorithm which also runs in time $\tilde{O}(2^{n/2})$.
Quantum circuits that are classically simulatable tell us when quantum computation becomes less powerful than or equivalent to classical computation. Such classically simulatable circuits are of importance because they illustrate what makes universal quantum computation different from classical computers. In this work, we propose a novel family of classically simulatable circuits by making use of dual-unitary quantum circuits (DUQCs), which have been recently investigated as exactly solvable models of non-equilibrium physics, and we characterize their computational power. Specifically, we investigate the computational complexity of the problem of calculating local expectation values and the sampling problem of one-dimensional DUQCs, and we generalize them to two spatial dimensions. We reveal that a local expectation value of a DUQC is classically simulatable at an early time, which is linear in a system length. In contrast, in a late time, they can perform universal quantum computation, and the problem becomes a BQP-complete problem. Moreover, classical simulation of sampling from a DUQC turns out to be hard.
We establish an efficient approximation algorithm for the partition functions of a class of quantum spin systems at low temperature, which can be viewed as stable quantum perturbations of classical spin systems. Our algorithm is based on combining the contour representation of quantum spin systems of this type due to Borgs, Koteck\'y, and Ueltschi with the algorithmic framework developed by Helmuth, Perkins, and Regts, and Borgs et al.
In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.
A key step in quantum machine learning with classical inputs is the design of an embedding circuit mapping inputs to a quantum state. This paper studies a transfer learning setting in which classical-to-quantum embedding is carried out by an arbitrary parametric quantum circuit that is pre-trained based on data from a source task. At run time, the binary classifier is then optimized based on data from the target task of interest. Using an information-theoretic approach, we demonstrate that the average excess risk, or optimality gap, can be bounded in terms of two R\'enyi mutual information terms between classical input and quantum embedding under source and target tasks, as well as in terms of a measure of similarity between the source and target tasks related to the trace distance. The main theoretical results are validated on a simple binary classification example.
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as $d$-logics. Unlike logics based on the topological closure operator, $d$-logics have not previously been studied in the framework of dynamical systems, which are pairs $(X,f)$ consisting of a topological space $X$ equipped with a continuous function $f\colon X\to X$. We introduce the logics $\bf{wK4C}$, $\bf{K4C}$ and $\bf{GLC}$ and show that they all have the finite Kripke model property and are sound and complete with respect to the $d$-semantics in this dynamical setting. In particular, we prove that $\bf{wK4C}$ is the $d$-logic of all dynamic topological systems, $\bf{K4C}$ is the $d$-logic of all $T_D$ dynamic topological systems, and $\bf{GLC}$ is the $d$-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where $f$ is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems $\bf{wK4H}$, $\bf{K4H}$ and $\bf{GLH}$. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological $d$-logics. Furthermore, our result for $\bf{GLC}$ constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation $\mathord{-}$ something known to be impossible over the class of all spaces.
We consider the problem of Bayesian optimization of a one-dimensional Brownian motion in which the $T$ adaptively chosen observations are corrupted by Gaussian noise. We show that as the smallest possible expected cumulative regret and the smallest possible expected simple regret scale as $\Omega(\sigma\sqrt{T / \log (T)}) \cap \mathcal{O}(\sigma\sqrt{T} \cdot \log T)$ and $\Omega(\sigma / \sqrt{T \log (T)}) \cap \mathcal{O}(\sigma\log T / \sqrt{T})$ respectively, where $\sigma^2$ is the noise variance. Thus, our upper and lower bounds are tight up to a factor of $\mathcal{O}( (\log T)^{1.5} )$. The upper bound uses an algorithm based on confidence bounds and the Markov property of Brownian motion (among other useful properties), and the lower bound is based on a reduction to binary hypothesis testing.
In this paper, we study code-based signatures constructed from Proof of Knowledge (PoK). This line of work can be traced back to Stern who introduces the first efficient PoK for the syndrome decoding problem in 1993. Afterward, different variations were proposed in order to reduce signature's size. In practice, obtaining a smaller signature size relies on the interaction of two main considerations: (i) the underlying protocol and its soundness error and (ii) the type of optimizations which are compatible with a given protocol. Over the years, different variations were proposed to improve the Stern scheme such as the Veron scheme (with public key a noisy codeword rather than a syndrome), the AGS scheme which is a 5-pass protocol with cheating probability asymptotically equal to 1/2 and more recently the FJR approach which permits to decrease the cheating probability to 1/N but induces a performance overhead. Overall the length of the signature depends on a trade-off between: the scheme in itself, the possible optimizations and the cost of the implementation. The recent approaches which increase the cost of the implementation opens the door to many different type of trade-offs. In this paper we propose three new schemes and different trade-offs, which are all interesting in themselves, since depending on potential future optimizations a scheme may eventually become more efficient than another. All the schemes we propose use a trusted helper: a first scheme permits to get a 1/2 cheating probability, a second scheme permits to decrease the cheating probability in 1/N but with a different approach than the recent FJR scheme and at last a third scheme propose a Veron-like adaptation of the FJR scheme in which the public key is a noisy codeword rather than a syndrome. We provide an extensive comparison table which lists various trade-offs between our schemes and previous ones.
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
We propose a scalable Gromov-Wasserstein learning (S-GWL) method and establish a novel and theoretically-supported paradigm for large-scale graph analysis. The proposed method is based on the fact that Gromov-Wasserstein discrepancy is a pseudometric on graphs. Given two graphs, the optimal transport associated with their Gromov-Wasserstein discrepancy provides the correspondence between their nodes and achieves graph matching. When one of the graphs has isolated but self-connected nodes ($i.e.$, a disconnected graph), the optimal transport indicates the clustering structure of the other graph and achieves graph partitioning. Using this concept, we extend our method to multi-graph partitioning and matching by learning a Gromov-Wasserstein barycenter graph for multiple observed graphs; the barycenter graph plays the role of the disconnected graph, and since it is learned, so is the clustering. Our method combines a recursive $K$-partition mechanism with a regularized proximal gradient algorithm, whose time complexity is $\mathcal{O}(K(E+V)\log_K V)$ for graphs with $V$ nodes and $E$ edges. To our knowledge, our method is the first attempt to make Gromov-Wasserstein discrepancy applicable to large-scale graph analysis and unify graph partitioning and matching into the same framework. It outperforms state-of-the-art graph partitioning and matching methods, achieving a trade-off between accuracy and efficiency.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.