The COVID-19 pandemic has posed a heavy burden to the healthcare system worldwide and caused huge social disruption and economic loss. Many deep learning models have been proposed to conduct clinical predictive tasks such as mortality prediction for COVID-19 patients in intensive care units using Electronic Health Record (EHR) data. Despite their initial success in certain clinical applications, there is currently a lack of benchmarking results to achieve a fair comparison so that we can select the optimal model for clinical use. Furthermore, there is a discrepancy between the formulation of traditional prediction tasks and real-world clinical practice in intensive care. To fill these gaps, we propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units. The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients. We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks, including 5 machine learning models, 6 basic deep learning models and 6 deep learning predictive models specifically designed for EHR data. We provide benchmarking results using data from two real-world COVID-19 EHR datasets. Both datasets are publicly available without needing any inquiry and one dataset can be accessed on request. We provide fair, reproducible benchmarking results for two tasks. We deploy all experiment results and models on an online platform. We also allow clinicians and researchers to upload their data to the platform and get quick prediction results using our trained models. We hope our efforts can further facilitate deep learning and machine learning research for COVID-19 predictive modeling.
Spectre intrusions exploit speculative execution design vulnerabilities in modern processors. The attacks violate the principles of isolation in programs to gain unauthorized private user information. Current state-of-the-art detection techniques utilize micro-architectural features or vulnerable speculative code to detect these threats. However, these techniques are insufficient as Spectre attacks have proven to be more stealthy with recently discovered variants that bypass current mitigation mechanisms. Side-channels generate distinct patterns in processor cache, and sensitive information leakage is dependent on source code vulnerable to Spectre attacks, where an adversary uses these vulnerabilities, such as branch prediction, which causes a data breach. Previous studies predominantly approach the detection of Spectre attacks using the microarchitectural analysis, a reactive approach. Hence, in this paper, we present the first comprehensive evaluation of static and microarchitectural analysis-assisted machine learning approaches to detect Spectre vulnerable code snippets (preventive) and Spectre attacks (reactive). We evaluate the performance trade-offs in employing classifiers for detecting Spectre vulnerabilities and attacks.
As two important textual modalities in electronic health records (EHR), both structured data (clinical codes) and unstructured data (clinical narratives) have recently been increasingly applied to the healthcare domain. Most existing EHR-oriented studies, however, either focus on a particular modality or integrate data from different modalities in a straightforward manner, which usually treats structured and unstructured data as two independent sources of information about patient admission and ignore the intrinsic interactions between them. In fact, the two modalities are documented during the same encounter where structured data inform the documentation of unstructured data and vice versa. In this paper, we proposed a Medical Multimodal Pre-trained Language Model, named MedM-PLM, to learn enhanced EHR representations over structured and unstructured data and explore the interaction of two modalities. In MedM-PLM, two Transformer-based neural network components are firstly adopted to learn representative characteristics from each modality. A cross-modal module is then introduced to model their interactions. We pre-trained MedM-PLM on the MIMIC-III dataset and verified the effectiveness of the model on three downstream clinical tasks, i.e., medication recommendation, 30-day readmission prediction and ICD coding. Extensive experiments demonstrate the power of MedM-PLM compared with state-of-the-art methods. Further analyses and visualizations show the robustness of our model, which could potentially provide more comprehensive interpretations for clinical decision-making.
Patient scheduling is a difficult task involving stochastic factors such as the unknown arrival times of patients. Similarly, the scheduling of radiotherapy for cancer treatments needs to handle patients with different urgency levels when allocating resources. High priority patients may arrive at any time, and there must be resources available to accommodate them. A common solution is to reserve a flat percentage of treatment capacity for emergency patients. However, this solution can result in overdue treatments for urgent patients, a failure to fully exploit treatment capacity, and delayed treatments for low-priority patients. This problem is especially severe in large and crowded hospitals. In this paper, we propose a prediction-based approach for online dynamic radiotherapy scheduling that dynamically adapts the present scheduling decision based on each incoming patient and the current allocation of resources. Our approach is based on a regression model trained to recognize the links between patients' arrival patterns, and their ideal waiting time in optimal offline solutions where all future arrivals are known in advance. When our prediction-based approach is compared to flat-reservation policies, it does a better job of preventing overdue treatments for emergency patients, while also maintaining comparable waiting times for the other patients. We also demonstrate how our proposed approach supports explainability and interpretability in scheduling decisions using SHAP values.
Clinician-facing predictive models are increasingly present in the healthcare setting. Regardless of their success with respect to performance metrics, all models have uncertainty. We investigate how to visually communicate uncertainty in this setting in an actionable, trustworthy way. To this end, we conduct a qualitative study with cardiac critical care clinicians. Our results reveal that clinician trust may be impacted most not by the degree of uncertainty, but rather by how transparent the visualization of what the sources of uncertainty are. Our results show a clear connection between feature interpretability and clinical actionability.
Business process compliance is a key area of business process management and aims at ensuring that processes obey to compliance constraints such as regulatory constraints or business rules imposed on them. Process compliance can be checked during process design time based on verification of process models and at runtime based on monitoring the compliance states of running process instances. For existing compliance monitoring approaches it remains unclear whether and how compliance violations can be predicted, although predictions are crucial in order to prepare and take countermeasures in time. This work, hence, analyzes existing literature from compliance monitoring as well as predictive process monitoring and provides an updated framework of compliance monitoring functionalities. For each compliance monitoring functionality we elicit prediction requirements and analyze their coverage by existing approaches. Based on this analysis, we delimit predictive compliance monitoring as new research area. Afterwards, open challenges and research directions for predictive compliance and process monitoring are elaborated.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.
Deep learning techniques have led to remarkable breakthroughs in the field of generic object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. Although this is a challenging task, the community has proposed a lot of SGG approaches and achieved good results. In this paper, we provide a comprehensive survey of recent achievements in this field brought about by deep learning techniques. We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG from the perspective of feature extraction and fusion. We attempt to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Finally, we finish this survey with deep discussions about current existing problems and future research directions. This survey will help readers to develop a better understanding of the current research status and ideas.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.