亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current blockchains do not provide any security guarantees to the smart contracts and their users as far as the content of the transactions is concerned. In the spirit of decentralization and censorship resistance, they follow the paradigm of including valid transactions in blocks without any further scrutiny. Rollups are a special kind of blockchains whose primary purpose is to scale the transaction throughput. Many of the existing rollups operate through a centrally operated sequencing protocol. In this paper, we introduce the Sequencer Level Security (SLS) protocol, an enhancement to sequencing protocols of rollups. This pioneering contribution explores the concept of the sequencer's capability to identify and temporarily quarantine malicious transactions instead of including them in blocks immediately. We describe the mechanics of the protocol for both the transactions submitted to the rollup mempool, as well as transactions originating from Layer one. We comment on topics such as trust and decentralization, and consider the security impact on the protocol itself. We implement a prototype of the SLS protocol, Zircuit, which is built on top of Geth and the OP stack. The SLS protocol described can be easily generalized to other rollup designs, and can be used for purposes other than security.

相關內容

Committing to information is a central task in cryptography, where a party (typically called a prover) stores a piece of information (e.g., a bit string) with the promise of not changing it. This information can be accessed by another party (typically called the verifier), who can later learn the information and verify that it was not meddled with. Merkle trees are a well-known construction for doing so in a succinct manner, in which the verifier can learn any part of the information by receiving a short proof from the honest prover. Despite its significance in classical cryptography, there was no quantum analog of the Merkle tree. A direct generalization using the Quantum Random Oracle Model (QROM) does not seem to be secure. In this work, we propose the quantum Merkle tree. It is based on what we call the Quantum Haar Random Oracle Model (QHROM). In QHROM, both the prover and the verifier have access to a Haar random quantum oracle $G$ and its inverse. Using the quantum Merkle tree, we propose a succinct quantum argument for the Gap-$k$-Local-Hamiltonian problem. Assuming the Quantum PCP conjecture is true, this succinct argument extends to all of QMA. This work raises a number of interesting open research problems.

Data constitute the foundational component of the data economy and its marketplaces. Efficient and fair data valuation has emerged as a topic of significant interest.\ Many approaches based on marginal contribution have shown promising results in various downstream tasks. However, they are well known to be computationally expensive as they require training a large number of utility functions, which are used to evaluate the usefulness or value of a given dataset for a specific purpose. As a result, it has been recognized as infeasible to apply these methods to a data marketplace involving large-scale datasets. Consequently, a critical issue arises: how can the re-training of the utility function be avoided? To address this issue, we propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV). Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state. In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states. Notably, our method requires only training once to estimate the value of all data points, significantly improving the computational efficiency. We conduct comprehensive experiments using different datasets and tasks. The results demonstrate that the proposed NDDV method outperforms the existing state-of-the-art data valuation methods in accurately identifying data points with either high or low values and is more computationally efficient.

Diffusion models are a class of generative models that generate high-quality samples, but at present it is difficult to characterize how they depend upon their training data. This difficulty raises scientific and regulatory questions, and is a consequence of the complexity of diffusion models and their sampling process. To analyze this dependence, we introduce Ablation Based Counterfactuals (ABC), a method of performing counterfactual analysis that relies on model ablation rather than model retraining. In our approach, we train independent components of a model on different but overlapping splits of a training set. These components are then combined into a single model, from which the causal influence of any training sample can be removed by ablating a combination of model components. We demonstrate how we can construct a model like this using an ensemble of diffusion models. We then use this model to study the limits of training data attribution by enumerating full counterfactual landscapes, and show that single source attributability diminishes with increasing training data size. Finally, we demonstrate the existence of unattributable samples.

Prophet inequalities are fundamental optimal stopping problems, where a decision-maker observes sequentially items with values sampled independently from known distributions, and must decide at each new observation to either stop and gain the current value or reject it irrevocably and move to the next step. This model is often too pessimistic and does not adequately represent real-world online selection processes. Potentially, rejected items can be revisited and a fraction of their value can be recovered. To analyze this problem, we consider general decay functions $D_1,D_2,\ldots$, quantifying the value to be recovered from a rejected item, depending on how far it has been observed in the past. We analyze how lookback improves, or not, the competitive ratio in prophet inequalities in different order models. We show that, under mild monotonicity assumptions on the decay functions, the problem can be reduced to the case where all the decay functions are equal to the same function $x \mapsto \gamma x$, where $\gamma = \inf_{x>0} \inf_{j \geq 1} D_j(x)/x$. Consequently, we focus on this setting and refine the analyses of the competitive ratios, with upper and lower bounds expressed as increasing functions of $\gamma$.

The Synchronic Web is a distributed network for securing data provenance on the World Wide Web. By enabling clients around the world to freely commit digital information into a single shared view of history, it provides a foundational basis of truth on which to build decentralized and scalable trust across the Internet. Its core cryptographical capability allows mutually distrusting parties to create and verify statements of the following form: "I commit to this information--and only this information--at this moment in time." The backbone of the Synchronic Web infrastructure is a simple, small, and semantic-free blockchain that is accessible to any Internet-enabled entity. The infrastructure is maintained by a permissioned network of well-known servers, called notaries, and accessed by a permissionless group of clients, called ledgers. Through an evolving stack of flexible and composable semantic specifications, the parties cooperate to generate synchronic commitments over arbitrary data. When integrated with existing infrastructures, adapted to diverse domains, and scaled across the breadth of cyberspace, the Synchronic Web provides a ubiquitous mechanism to lock the world's data into unique points in discrete time and digital space.

As AI systems are increasingly incorporated into domains where human behavior has set the norm, a challenge for AI governance and AI alignment research is to regulate their behavior in a way that is useful and constructive for society. One way to answer this question is to ask: how do we govern the human behavior that the models are emulating? To evaluate human behavior, the American legal system often uses the "Reasonable Person Standard." The idea of "reasonable" behavior comes up in nearly every area of law. The legal system often judges the actions of parties with respect to what a reasonable person would have done under similar circumstances. This paper argues that the reasonable person standard provides useful guidelines for the type of behavior we should develop, probe, and stress-test in models. It explains how reasonableness is defined and used in key areas of the law using illustrative cases, how the reasonable person standard could apply to AI behavior in each of these areas and contexts, and how our societal understanding of "reasonable" behavior provides useful technical goals for AI researchers.

We have conducted a qualitative psychology study to explore the experience of feeling overwhelmed in the realm of software development. Through the candid confessions of two participants who have recently faced overwhelming challenges, we have identified seven distinct categories: communication-induced, disturbance-related, organizational, variety, technical, temporal, and positive overwhelm. While most types of overwhelm tend to deteriorate productivity and increase stress levels, developers sometimes perceive overwhelm as a catalyst for heightened focus, self-motivation, and productivity. Stress was often found to be a common companion of overwhelm. Our findings align with previous studies conducted in diverse disciplines. However, we believe that software developers possess unique traits that may enable them to navigate through the storm of overwhelm more effectively.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司