亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decentralized learning offers privacy and communication efficiency when data are naturally distributed among agents communicating over an underlying graph. Motivated by overparameterized learning settings, in which models are trained to zero training loss, we study algorithmic and generalization properties of decentralized learning with gradient descent on separable data. Specifically, for decentralized gradient descent (DGD) and a variety of loss functions that asymptote to zero at infinity (including exponential and logistic losses), we derive novel finite-time generalization bounds. This complements a long line of recent work that studies the generalization performance and the implicit bias of gradient descent over separable data, but has thus far been limited to centralized learning scenarios. Notably, our generalization bounds approximately match in order their centralized counterparts. Critical behind this, and of independent interest, is establishing novel bounds on the training loss and the rate-of-consensus of DGD for a class of self-bounded losses. Finally, on the algorithmic front, we design improved gradient-based routines for decentralized learning with separable data and empirically demonstrate orders-of-magnitude of speed-up in terms of both training and generalization performance.

相關內容

Several NP-hard problems are solved exactly using exponential-time branching strategies, whether it be branch-and-bound algorithms, or bounded search trees in fixed-parameter algorithms. The number of tractable instances that can be handled by sequential algorithms is usually small, whereas massive parallelization has been shown to significantly increase the space of instances that can be solved exactly. However, previous centralized approaches require too much communication to be efficient, whereas decentralized approaches are more efficient but have difficulty keeping track of the global state of the exploration. In this work, we propose to revisit the centralized paradigm while avoiding previous bottlenecks. In our strategy, the center has lightweight responsibilities, requires only a few bits for every communication, but is still able to keep track of the progress of every worker. In particular, the center never holds any task but is able to guarantee that a process with no work always receives the highest priority task globally. Our strategy was implemented in a generic C++ library called GemPBA, which allows a programmer to convert a sequential branching algorithm into a parallel version by changing only a few lines of code. An experimental case study on the vertex cover problem demonstrates that some of the toughest instances from the DIMACS challenge graphs that would take months to solve sequentially can be handled within two hours with our approach.

Federated learning (FL) has recently gained much attention due to its effectiveness in speeding up supervised learning tasks under communication and privacy constraints. However, whether similar speedups can be established for reinforcement learning remains much less understood theoretically. Towards this direction, we study a federated policy evaluation problem where agents communicate via a central aggregator to expedite the evaluation of a common policy. To capture typical communication constraints in FL, we consider finite capacity up-link channels that can drop packets based on a Bernoulli erasure model. Given this setting, we propose and analyze QFedTD - a quantized federated temporal difference learning algorithm with linear function approximation. Our main technical contribution is to provide a finite-sample analysis of QFedTD that (i) highlights the effect of quantization and erasures on the convergence rate; and (ii) establishes a linear speedup w.r.t. the number of agents under Markovian sampling. Notably, while different quantization mechanisms and packet drop models have been extensively studied in the federated learning, distributed optimization, and networked control systems literature, our work is the first to provide a non-asymptotic analysis of their effects in multi-agent and federated reinforcement learning.

A plethora of modern machine learning tasks require the utilization of large-scale distributed clusters as a critical component of the training pipeline. However, abnormal Byzantine behavior of the worker nodes can derail the training and compromise the quality of the inference. Such behavior can be attributed to unintentional system malfunctions or orchestrated attacks; as a result, some nodes may return arbitrary results to the parameter server (PS) that coordinates the training. Recent work considers a wide range of attack models and has explored robust aggregation and/or computational redundancy to correct the distorted gradients. In this work, we consider attack models ranging from strong ones: $q$ omniscient adversaries with full knowledge of the defense protocol that can change from iteration to iteration to weak ones: $q$ randomly chosen adversaries with limited collusion abilities which only change every few iterations at a time. Our algorithms rely on redundant task assignments coupled with detection of adversarial behavior. We also show the convergence of our method to the optimal point under common assumptions and settings considered in literature. For strong attacks, we demonstrate a reduction in the fraction of distorted gradients ranging from 16%-99% as compared to the prior state-of-the-art. Our top-1 classification accuracy results on the CIFAR-10 data set demonstrate 25% advantage in accuracy (averaged over strong and weak scenarios) under the most sophisticated attacks compared to state-of-the-art methods.

Given the increasing interest in interpretable machine learning, classification trees have again attracted the attention of the scientific community because of their glass-box structure. These models are usually built using greedy procedures, solving subproblems to find cuts in the feature space that minimize some impurity measures. In contrast to this standard greedy approach and to the recent advances in the definition of the learning problem through MILP-based exact formulations, in this paper we propose a novel evolutionary algorithm for the induction of classification trees that exploits a memetic approach that is able to handle datasets with thousands of points. Our procedure combines the exploration of the feasible space of solutions with local searches to obtain structures with generalization capabilities that are competitive with the state-of-the-art methods.

In recent years, different types of distributed learning schemes have received increasing attention for their strong advantages in handling large-scale data information. In the information era, to face the big data challenges which stem from functional data analysis very recently, we propose a novel distributed gradient descent functional learning (DGDFL) algorithm to tackle functional data across numerous local machines (processors) in the framework of reproducing kernel Hilbert space. Based on integral operator approaches, we provide the first theoretical understanding of the DGDFL algorithm in many different aspects in the literature. On the way of understanding DGDFL, firstly, a data-based gradient descent functional learning (GDFL) algorithm associated with a single-machine model is proposed and comprehensively studied. Under mild conditions, confidence-based optimal learning rates of DGDFL are obtained without the saturation boundary on the regularity index suffered in previous works in functional regression. We further provide a semi-supervised DGDFL approach to weaken the restriction on the maximal number of local machines to ensure optimal rates. To our best knowledge, the DGDFL provides the first distributed iterative training approach to functional learning and enriches the stage of functional data analysis.

Reinforcement Learning (RL) algorithms are known to scale poorly to environments with many available actions, requiring numerous samples to learn an optimal policy. The traditional approach of considering the same fixed action space in every possible state implies that the agent must understand, while also learning to maximize its reward, to ignore irrelevant actions such as $\textit{inapplicable actions}$ (i.e. actions that have no effect on the environment when performed in a given state). Knowing this information can help reduce the sample complexity of RL algorithms by masking the inapplicable actions from the policy distribution to only explore actions relevant to finding an optimal policy. While this technique has been formalized for quite some time within the Automated Planning community with the concept of precondition in the STRIPS language, RL algorithms have never formally taken advantage of this information to prune the search space to explore. This is typically done in an ad-hoc manner with hand-crafted domain logic added to the RL algorithm. In this paper, we propose a more systematic approach to introduce this knowledge into the algorithm. We (i) standardize the way knowledge can be manually specified to the agent; and (ii) present a new framework to autonomously learn the partial action model encapsulating the precondition of an action jointly with the policy. We show experimentally that learning inapplicable actions greatly improves the sample efficiency of the algorithm by providing a reliable signal to mask out irrelevant actions. Moreover, we demonstrate that thanks to the transferability of the knowledge acquired, it can be reused in other tasks and domains to make the learning process more efficient.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Imitation learning aims to extract knowledge from human experts' demonstrations or artificially created agents in order to replicate their behaviors. Its success has been demonstrated in areas such as video games, autonomous driving, robotic simulations and object manipulation. However, this replicating process could be problematic, such as the performance is highly dependent on the demonstration quality, and most trained agents are limited to perform well in task-specific environments. In this survey, we provide a systematic review on imitation learning. We first introduce the background knowledge from development history and preliminaries, followed by presenting different taxonomies within Imitation Learning and key milestones of the field. We then detail challenges in learning strategies and present research opportunities with learning policy from suboptimal demonstration, voice instructions and other associated optimization schemes.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司