Multi-modal large language models (MLLMs) have demonstrated remarkable vision-language capabilities, primarily due to the exceptional in-context understanding and multi-task learning strengths of large language models (LLMs). The advent of visual instruction tuning has further enhanced MLLMs' performance in vision-language understanding. However, while existing MLLMs adeptly recognize \textit{what} objects are in an image, they still face challenges in effectively discerning \textit{where} these objects are, particularly along the distance (scene depth) axis. To overcome this limitation in MLLMs, we introduce Proximity Question Answering (Proximity QA), a novel framework designed to enable MLLMs to infer the proximity relationship between objects in images. The framework operates in two phases: the first phase focuses on guiding the models to understand the relative depth of objects, and the second phase further encourages the models to infer the proximity relationships between objects based on their depth perceptions. We also propose a VQA dataset called Proximity-110K, containing additional instructions that incorporate depth information and the proximity relationships of objects. We have conducted extensive experiments to validate Proximity QA's superior ability in depth perception and proximity analysis, outperforming other state-of-the-art MLLMs. Code and dataset will be released at \textcolor{magenta}{//github.com/NorthSummer/ProximityQA.git}.
Although large language models (LLMs) have demonstrated impressive text generation capabilities, they are easily misled by the untruthful context provided by users or knowledge argumentation tools, thereby producing hallucinations. To alleviate the LLMs from being misled by untruthful information and take advantage of knowledge argumentation, we propose Truth-Aware Context Selection (TACS), a lightweight method to shield untruthful context from the inputs. TACS begins by performing truth detection on the input context, leveraging the parameterized knowledge within the LLM. Subsequently, it constructs a corresponding attention mask based on the truthfulness of each position, selecting the truthful context and discarding the untruthful context. Additionally, we introduce a new evaluation metric, Disturbance Adaption Rate, to further study the LLMs' ability to accept truthful information and resist untruthful information. Experimental results show that TACS can effectively filter information in context and significantly improve the overall quality of LLMs' responses when presented with misleading information.
Large language models (LLMs) such as ChatGPT have shown remarkable capabilities in code generation. Despite the great achievement, they rely on enormous training data to acquire a broad spectrum of open-domain knowledge. Besides, their evaluation revolves around open-domain benchmarks like HumanEval, which primarily consist of programming contests. Therefore, it is hard to fully characterize the intricacies and challenges associated with particular domains (e.g., web, game, and math). In this paper, we conduct an in-depth study of the LLMs in domain-specific code generation. Our results demonstrate that LLMs exhibit sub-optimal performance in generating domain-specific code, due to their limited proficiency in utilizing domain-specific libraries. We further observe that incorporating API knowledge as prompts can empower LLMs to generate more professional code. Based on these findings, we further investigate how to efficiently incorporate API knowledge into the code generation process. We experiment with three strategies for incorporating domain knowledge, namely, external knowledge inquirer, chain-of-thought prompting, and chain-of-thought fine-tuning. We refer to these strategies as a new code generation approach called DomCoder. Experimental results show that all strategies of DomCoder lead to improvement in the effectiveness of domain-specific code generation under certain settings. The results also show that there is still ample room for further improvement, based on which we suggest possible future works.
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.
Transformer-based models have gained widespread popularity in both the computer vision (CV) and natural language processing (NLP) fields. However, significant challenges arise during post-training linear quantization, leading to noticeable reductions in inference accuracy. Our study focuses on uncovering the underlying causes of these accuracy drops and proposing a quantization-friendly fine-tuning method, \textbf{QuantTune}. Firstly, our analysis revealed that, on average, 65\% of quantization errors result from the precision loss incurred by the dynamic range amplification effect of outliers across the target Transformer-based models. Secondly, \textbf{QuantTune} adjusts weights based on the deviation of outlier activations and effectively constrains the dynamic ranges of the problematic activations. As a result, it successfully mitigates the negative impact of outliers on the inference accuracy of quantized models. Lastly, \textbf{QuantTune} can be seamlessly integrated into the back-propagation pass in the fine-tuning process without requiring extra complexity in inference software and hardware design. Our approach showcases significant improvements in post-training quantization across a range of Transformer-based models, including ViT, Bert-base, and OPT. QuantTune reduces accuracy drops by 12.09\% at 8-bit quantization and 33.8\% at 7-bit compared to top calibration methods, outperforming state-of-the-art solutions by over 18.84\% across ViT models.
Multi-modal large language models (MLLMs) have demonstrated remarkable success in vision and visual-language tasks within the natural image domain. Owing to the significant diversities between the natural and remote sensing (RS) images, the development of MLLMs in the RS domain is still in the infant stage. To fill the gap, a pioneer MLLM named EarthGPT integrating various multi-sensor RS interpretation tasks uniformly is proposed in this paper for universal RS image comprehension. In EarthGPT, three key techniques are developed including a visual-enhanced perception mechanism, a cross-modal mutual comprehension approach, and a unified instruction tuning method for multi-sensor multi-task in the RS domain. More importantly, a dataset named MMRS-1M featuring large-scale multi-sensor multi-modal RS instruction-following is constructed, comprising over 1M image-text pairs based on 34 existing diverse RS datasets and including multi-sensor images such as optical, synthetic aperture radar (SAR), and infrared. The MMRS-1M dataset addresses the drawback of MLLMs on RS expert knowledge and stimulates the development of MLLMs in the RS domain. Extensive experiments are conducted, demonstrating the EarthGPT's superior performance in various RS visual interpretation tasks compared with the other specialist models and MLLMs, proving the effectiveness of the proposed EarthGPT and offering a versatile paradigm for open-set reasoning tasks.
Large language models (LLMs) are complex artificial intelligence systems capable of understanding, generating and translating human language. They learn language patterns by analyzing large amounts of text data, allowing them to perform writing, conversation, summarizing and other language tasks. When LLMs process and generate large amounts of data, there is a risk of leaking sensitive information, which may threaten data privacy. This paper concentrates on elucidating the data privacy concerns associated with LLMs to foster a comprehensive understanding. Specifically, a thorough investigation is undertaken to delineate the spectrum of data privacy threats, encompassing both passive privacy leakage and active privacy attacks within LLMs. Subsequently, we conduct an assessment of the privacy protection mechanisms employed by LLMs at various stages, followed by a detailed examination of their efficacy and constraints. Finally, the discourse extends to delineate the challenges encountered and outline prospective directions for advancement in the realm of LLM privacy protection.
Large language models (LLMs) are demonstrating remarkable capabilities across various tasks despite lacking a foundation in human cognition. This raises the question: can these models, beyond simply mimicking human language patterns, offer insights into the mechanisms underlying human cognition? This study explores the ability of ChatGPT to predict human performance in a language-based memory task. Building upon theories of text comprehension, we hypothesize that recognizing ambiguous sentences (e.g., "Because Bill drinks wine is never kept in the house") is facilitated by preceding them with contextually relevant information. Participants, both human and ChatGPT, were presented with pairs of sentences. The second sentence was always a garden-path sentence designed to be inherently ambiguous, while the first sentence either provided a fitting (e.g., "Bill has chronic alcoholism") or an unfitting context (e.g., "Bill likes to play golf"). We measured both human's and ChatGPT's ratings of sentence relatedness, ChatGPT's memorability ratings for the garden-path sentences, and humans' spontaneous memory for the garden-path sentences. The results revealed a striking alignment between ChatGPT's assessments and human performance. Sentences deemed more related and assessed as being more memorable by ChatGPT were indeed better remembered by humans, even though ChatGPT's internal mechanisms likely differ significantly from human cognition. This finding, which was confirmed with a robustness check employing synonyms, underscores the potential of generative AI models to predict human performance accurately. We discuss the broader implications of these findings for leveraging LLMs in the development of psychological theories and for gaining a deeper understanding of human cognition.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.