The network effect, wherein one user's activity impacts another user, is common in social network platforms. Many new features in social networks are specifically designed to create a network effect, enhancing user engagement. For instance, content creators tend to produce more when their articles and posts receive positive feedback from followers. This paper discusses a new cluster-level experimentation methodology for measuring creator-side metrics in the context of A/B experiments. The methodology is designed to address cases where the experiment randomization unit and the metric measurement unit differ. It is a crucial part of LinkedIn's overall strategy to foster a robust creator community and ecosystem. The method is developed based on widely-cited research at LinkedIn but significantly improves the efficiency and flexibility of the clustering algorithm. This improvement results in a stronger capability for measuring creator-side metrics and an increased velocity for creator-related experiments.
We consider communication over the Gaussian multiple-access channel in the regime where the number of users grows linearly with the codelength. In this regime, schemes based on sparse superposition coding can achieve a near-optimal tradeoff between spectral efficiency and signal-to-noise ratio. However, these schemes are feasible only for small values of user payload. This paper investigates efficient schemes for larger user payloads, focusing on coded CDMA schemes where each user's information is encoded via a linear code before being modulated with a signature sequence. We propose an efficient approximate message passing (AMP) decoder that can be tailored to the structure of the linear code, and provide an exact asymptotic characterization of its performance. Based on this result, we consider a decoder that integrates AMP and belief propagation and characterize its tradeoff between spectral efficiency and signal-to-noise ratio, for a given target error rate. Simulation results show that the decoder achieves state-of-the-art performance at finite lengths, with a coded CDMA scheme defined using LDPC codes and a spatially coupled matrix of signature sequences.
Empowered by transformer-based models, visual tracking has advanced significantly. However, the slow speed of current trackers limits their applicability on devices with constrained computational resources. To address this challenge, we introduce ABTrack, an adaptive computation framework that adaptively bypassing transformer blocks for efficient visual tracking. The rationale behind ABTrack is rooted in the observation that semantic features or relations do not uniformly impact the tracking task across all abstraction levels. Instead, this impact varies based on the characteristics of the target and the scene it occupies. Consequently, disregarding insignificant semantic features or relations at certain abstraction levels may not significantly affect the tracking accuracy. We propose a Bypass Decision Module (BDM) to determine if a transformer block should be bypassed, which adaptively simplifies the architecture of ViTs and thus speeds up the inference process. To counteract the time cost incurred by the BDMs and further enhance the efficiency of ViTs, we introduce a novel ViT pruning method to reduce the dimension of the latent representation of tokens in each transformer block. Extensive experiments on multiple tracking benchmarks validate the effectiveness and generality of the proposed method and show that it achieves state-of-the-art performance. Code is released at: //github.com/xyyang317/ABTrack.
In future 6G wireless networks, semantic and effectiveness aspects of communications will play a fundamental role, incorporating meaning and relevance into transmissions. However, obstacles arise when devices employ diverse languages, logic, or internal representations, leading to semantic mismatches that might jeopardize understanding. In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data. This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches via latent space alignment. We propose a dynamic optimization strategy that adapts relative representations, communication parameters, and computation resources for energy-efficient, low-latency, goal-oriented semantic communications. Numerical results demonstrate our methodology's effectiveness in mitigating mismatches among devices, while optimizing energy consumption, delay, and effectiveness.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.