This study explores the vaccine prioritization strategy to reduce the overall burden of the pandemic when the supply is limited. Existing methods conduct macro-level or simplified micro-level vaccine distribution by assuming the homogeneous behavior within subgroup populations and lacking mobility dynamics integration. Directly applying these models for micro-level vaccine allocation leads to sub-optimal solutions due to the lack of behavioral-related details. To address the issue, we first incorporate the mobility heterogeneity in disease dynamics modeling and mimic the disease evolution process using a Trans-vaccine-SEIR model. Then we develop a novel deep reinforcement learning to seek the optimal vaccine allocation strategy for the high-degree spatial-temporal disease evolution system. The graph neural network is used to effectively capture the structural properties of the mobility contact network and extract the dynamic disease features. In our evaluation, the proposed framework reduces 7% - 10% of infections and deaths than the baseline strategies. Extensive evaluation shows that the proposed framework is robust to seek the optimal vaccine allocation with diverse mobility patterns in the micro-level disease evolution system. In particular, we find the optimal vaccine allocation strategy in the transit usage restriction scenario is significantly more effective than restricting cross-zone mobility for the top 10% age-based and income-based zones. These results provide valuable insights for areas with limited vaccines and low logistic efficacy.
Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.
The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.
The utilization of teleoperation is a crucial aspect of the construction industry, as it enables operators to control machines safely from a distance. However, remote operation of these machines at a joint level using individual joysticks necessitates extensive training for operators to achieve proficiency due to their multiple degrees of freedom. Additionally, verifying the machine resulting motion is only possible after execution, making optimal control challenging. In addressing this issue, this study proposes a reinforcement learning-based approach to optimize task performance. The control policy acquired through learning is used to provide instructions on efficiently controlling and coordinating multiple joints. To evaluate the effectiveness of the proposed framework, a user study is conducted with a Brokk 170 construction machine by assessing its performance in a typical construction task involving inserting a chisel into a borehole. The effectiveness of the proposed framework is evaluated by comparing the performance of participants in the presence and absence of virtual fixtures. This study results demonstrate the proposed framework potential in enhancing the teleoperation process in the construction industry.
Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~\cite{fu2020d4rl}, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Ground-based solar image restoration is a computationally expensive procedure that involves nonlinear optimization techniques. The presence of atmospheric turbulence produces perturbations in individual images that make it necessary to apply blind deconvolution techniques. These techniques rely on the observation of many short exposure frames that are used to simultaneously infer the instantaneous state of the atmosphere and the unperturbed object. We have recently explored the use of machine learning to accelerate this process, with promising results. We build upon this previous work to propose several interesting improvements that lead to better models. As well, we propose a new method to accelerate the restoration based on algorithm unrolling. In this method, the image restoration problem is solved with a gradient descent method that is unrolled and accelerated aided by a few small neural networks. The role of the neural networks is to correct the estimation of the solution at each iterative step. The model is trained to perform the optimization in a small fixed number of steps with a curated dataset. Our findings demonstrate that both methods significantly reduce the restoration time compared to the standard optimization procedure. Furthermore, we showcase that these models can be trained in an unsupervised manner using observed images from three different instruments. Remarkably, they also exhibit robust generalization capabilities when applied to new datasets. To foster further research and collaboration, we openly provide the trained models, along with the corresponding training and evaluation code, as well as the training dataset, to the scientific community.
In the scenario of class-incremental learning (CIL), deep neural networks have to adapt their model parameters to non-stationary data distributions, e.g., the emergence of new classes over time. However, CIL models are challenged by the well-known catastrophic forgetting phenomenon. Typical methods such as rehearsal-based ones rely on storing exemplars of old classes to mitigate catastrophic forgetting, which limits real-world applications considering memory resources and privacy issues. In this paper, we propose a novel rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks. Our approach involves jointly optimizing a plastic CNN feature extractor and an analytical feed-forward classifier. The inaccessibility of historical data is tackled by holistically controlling the parameters of a well-trained model, ensuring that the decision boundary learned fits new classes while retaining recognition of previously learned classes. Specifically, the trainable CNN feature extractor provides task-dependent knowledge separately without interference; and the final classifier integrates task-specific knowledge incrementally for decision-making without forgetting. In each CIL session, it accommodates new tasks by attaching a tiny set of declarative parameters to its backbone, in which only one matrix per task or one vector per class is kept for knowledge retention. Extensive experiments on a variety of task sequences show that our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order robustness. Furthermore, to make the non-growing backbone (i.e., a model with limited network capacity) suffice to train on more incoming tasks, a graceful forgetting implementation on previously learned trivial tasks is empirically investigated.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.