We investigate a variational method for ill-posed problems, named $\texttt{graphLa+}\Psi$, which embeds a graph Laplacian operator in the regularization term. The novelty of this method lies in constructing the graph Laplacian based on a preliminary approximation of the solution, which is obtained using any existing reconstruction method $\Psi$ from the literature. As a result, the regularization term is both dependent on and adaptive to the observed data and noise. We demonstrate that $\texttt{graphLa+}\Psi$ is a regularization method and rigorously establish both its convergence and stability properties. We present selected numerical experiments in 2D computerized tomography, wherein we integrate the $\texttt{graphLa+}\Psi$ method with various reconstruction techniques $\Psi$, including Filter Back Projection ($\texttt{graphLa+FBP}$), standard Tikhonov ($\texttt{graphLa+Tik}$), Total Variation ($\texttt{graphLa+TV}$), and a trained deep neural network ($\texttt{graphLa+Net}$). The $\texttt{graphLa+}\Psi$ approach significantly enhances the quality of the approximated solutions for each method $\Psi$. Notably, $\texttt{graphLa+Net}$ is outperforming, offering a robust and stable application of deep neural networks in solving inverse problems.
Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems
We design a randomized data structure that, for a fully dynamic graph $G$ updated by edge insertions and deletions and integers $k, d$ fixed upon initialization, maintains the answer to the Split Completion problem: whether one can add $k$ edges to $G$ to obtain a split graph. The data structure can be initialized on an edgeless $n$-vertex graph in time $n \cdot (k d \cdot \log n)^{\mathcal{O}(1)}$, and the amortized time complexity of an update is $5^k \cdot (k d \cdot \log n)^{\mathcal{O}(1)}$. The answer provided by the data structure is correct with probability $1-\mathcal{O}(n^{-d})$.
Learning causal relationships between variables is a fundamental task in causal inference and directed acyclic graphs (DAGs) are a popular choice to represent the causal relationships. As one can recover a causal graph only up to its Markov equivalence class from observations, interventions are often used for the recovery task. Interventions are costly in general and it is important to design algorithms that minimize the number of interventions performed. In this work, we study the problem of identifying the smallest set of interventions required to learn the causal relationships between a subset of edges (target edges). Under the assumptions of faithfulness, causal sufficiency, and ideal interventions, we study this problem in two settings: when the underlying ground truth causal graph is known (subset verification) and when it is unknown (subset search). For the subset verification problem, we provide an efficient algorithm to compute a minimum sized interventional set; we further extend these results to bounded size non-atomic interventions and node-dependent interventional costs. For the subset search problem, in the worst case, we show that no algorithm (even with adaptivity or randomization) can achieve an approximation ratio that is asymptotically better than the vertex cover of the target edges when compared with the subset verification number. This result is surprising as there exists a logarithmic approximation algorithm for the search problem when we wish to recover the whole causal graph. To obtain our results, we prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.
Positive linear programs (LPs) model many graph and operations research problems. One can solve for a $(1+\epsilon)$-approximation for positive LPs, for any selected $\epsilon$, in polylogarithmic depth and near-linear work via variations of the multiplicative weight update (MWU) method. Despite extensive theoretical work on these algorithms through the decades, their empirical performance is not well understood. In this work, we implement and test an efficient parallel algorithm for solving positive LP relaxations, and apply it to graph problems such as densest subgraph, bipartite matching, vertex cover and dominating set. We accelerate the algorithm via a new step size search heuristic. Our implementation uses sparse linear algebra optimization techniques such as fusion of vector operations and use of sparse format. Furthermore, we devise an implicit representation for graph incidence constraints. We demonstrate the parallel scalability with the use of threading OpenMP and MPI on the Stampede2 supercomputer. We compare this implementation with exact libraries and specialized libraries for the above problems in order to evaluate MWU's practical standing for both accuracy and performance among other methods. Our results show this implementation is faster than general purpose LP solvers (IBM CPLEX, Gurobi) in all of our experiments, and in some instances, outperforms state-of-the-art specialized parallel graph algorithms.
Contextual Bayesian Optimization (CBO) efficiently optimizes black-box functions with respect to design variables, while simultaneously integrating contextual information regarding the environment, such as experimental conditions. However, the relevance of contextual variables is not necessarily known beforehand. Moreover, contextual variables can sometimes be optimized themselves at additional cost, a setting overlooked by current CBO algorithms. Cost-sensitive CBO would simply include optimizable contextual variables as part of the design variables based on their cost. Instead, we adaptively select a subset of contextual variables to include in the optimization, based on the trade-off between their \emph{relevance} and the additional cost incurred by optimizing them compared to leaving them to be determined by the environment. We learn the relevance of contextual variables by sensitivity analysis of the posterior surrogate model while minimizing the cost of optimization by leveraging recent developments on early stopping for BO. We empirically evaluate our proposed Sensitivity-Analysis-Driven Contextual BO (SADCBO) method against alternatives on both synthetic and real-world experiments, together with extensive ablation studies, and demonstrate a consistent improvement across examples.
At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay for a weaker notion of degeneracy, or even parameterized by the maximum degree $\Delta$, i.e., whether it can be turned into an algorithm with delay $f(\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, and as a first step toward answering that question, they note that they could not achieve these time bounds even for the particular case of minimal dominating sets enumeration. In this paper, using ordered generation, we show that an FPT-delay algorithm can be devised for minimal transversals enumeration parameterized by the maximum degree and dimension, giving a positive and more general answer to the latter question.
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.
We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.
Generalized linear models (GLMs) form one of the most popular classes of models in statistics. The gamma variant is used, for instance, in actuarial science for the modelling of claim amounts in insurance. A flaw of GLMs is that they are not robust against outliers (i.e., against erroneous or extreme data points). A difference in trends in the bulk of the data and the outliers thus yields skewed inference and predictions. To address this problem, robust methods have been introduced. The most commonly applied robust method is frequentist and consists in an estimator which is derived from a modification of the derivative of the log-likelihood. We propose an alternative approach which is modelling-based and thus fundamentally different. It allows for an understanding and interpretation of the modelling, and it can be applied for both frequentist and Bayesian statistical analyses. The approach possesses appealing theoretical and empirical properties.