亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Memory constraint of always-on devices is one of the major concerns when deploying speech processing models on these devices. While larger models trained with sufficiently large amount of data generally perform better, making them fit in the device memory is a demanding challenge. In this paper, we aim to reduce model size by reparameterizing model weights across Transformer encoder layers and assuming a special weight composition and structure. More specifically, inspired by ResNet and the more recent LoRA work, we propose an approach named ResidualTransformer, where each weight matrix in a Transformer layer comprises 1) a shared full-rank component with its adjacent layers, and 2) a unique low-rank component to itself. The low-rank matrices only account for a small amount of model size increase. In addition, we add diagonal weight matrices to improve modeling capacity of the low-rank matrices. Experiments of our 10k-hour speech recognition and speech translation tasks show that the Transformer encoder size can be reduced by ~3X with very slight performance degradation.

相關內容

Image restoration is a fundamental problem that involves recovering a high-quality clean image from its degraded observation. All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model. In this work, we present the first approach that uses human-written instructions to guide the image restoration model. Given natural language prompts, our model can recover high-quality images from their degraded counterparts, considering multiple degradation types. Our method, InstructIR, achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. InstructIR improves +1dB over previous all-in-one restoration methods. Moreover, our dataset and results represent a novel benchmark for new research on text-guided image restoration and enhancement. Our code, datasets and models are available at: //github.com/mv-lab/InstructIR

Libraries of formalized mathematics use a possibly broad range of different representations for a same mathematical concept. Yet light to major manual input from users remains most often required for obtaining the corresponding variants of theorems, when such obvious replacements are typically left implicit on paper. This article presents Trocq, a new proof transfer framework for dependent type theory. Trocq is based on a novel formulation of type equivalence, used to generalize the univalent parametricity translation. This framework takes care of avoiding dependency on the axiom of univalence when possible, and may be used with more relations than just equivalences. We have implemented a corresponding plugin for the Coq proof assistant, in the CoqElpi meta-language. We use this plugin on a gallery of representative examples of proof transfer issues in interactive theorem proving, and illustrate how Trocq covers the spectrum of several existing tools, used in program verification as well as in formalized mathematics in the broad sense.

Large Language Model (LLM) services and models often come with legal rules on who can use them and how they must use them. Assessing the compliance of the released LLMs is crucial, as these rules protect the interests of the LLM contributor and prevent misuse. In this context, we describe the novel problem of Black-box Identity Verification (BBIV). The goal is to determine whether a third-party application uses a certain LLM through its chat function. We propose a method called Targeted Random Adversarial Prompt (TRAP) that identifies the specific LLM in use. We repurpose adversarial suffixes, originally proposed for jailbreaking, to get a pre-defined answer from the target LLM, while other models give random answers. TRAP detects the target LLMs with over 95% true positive rate at under 0.2% false positive rate even after a single interaction. TRAP remains effective even if the LLM has minor changes that do not significantly alter the original function.

The exploration of large language models (LLMs) for task planning and IoT automation has recently gained significant attention. However, existing works suffer from limitations in terms of resource accessibility, complex task planning, and efficiency. In this paper, we present LLMind, an LLM-based AI agent framework that enables effective collaboration among IoT devices for executing complex tasks. Inspired by the functional specialization theory of the brain, our framework integrates an LLM with domain-specific AI modules, enhancing its capabilities. Complex tasks, which may involve collaborations of multiple domain-specific AI modules and IoT devices, are executed through a control script generated by the LLM using a Language-Code transformation approach, which first converts language descriptions to an intermediate finite-state machine (FSM) before final precise transformation to code. Furthermore, the framework incorporates a novel experience accumulation mechanism to enhance response speed and effectiveness, allowing the framework to evolve and become progressively sophisticated through continuing user and machine interactions.

A standard practice in developing image recognition models is to train a model on a specific image resolution and then deploy it. However, in real-world inference, models often encounter images different from the training sets in resolution and/or subject to natural variations such as weather changes, noise types and compression artifacts. While traditional solutions involve training multiple models for different resolutions or input variations, these methods are computationally expensive and thus do not scale in practice. To this end, we propose a novel neural network model, parallel-structured and all-component Fourier neural operator (PAC-FNO), that addresses the problem. Unlike conventional feed-forward neural networks, PAC-FNO operates in the frequency domain, allowing it to handle images of varying resolutions within a single model. We also propose a two-stage algorithm for training PAC-FNO with a minimal modification to the original, downstream model. Moreover, the proposed PAC-FNO is ready to work with existing image recognition models. Extensively evaluating methods with seven image recognition benchmarks, we show that the proposed PAC-FNO improves the performance of existing baseline models on images with various resolutions by up to 77.1% and various types of natural variations in the images at inference.

There has been an increasing interest in large speech models that can perform multiple speech processing tasks in a single model. Such models usually adopt the encoder-decoder or decoder-only architecture due to their popularity and good performance in many domains. However, autoregressive models can be slower during inference compared to non-autoregressive models and also have potential risks of hallucination. Though prior studies observed promising results of non-autoregressive models for certain tasks at small scales, it remains unclear if they can be scaled to speech-to-text generation in diverse languages and tasks. Inspired by the Open Whisper-style Speech Model (OWSM) project, we propose OWSM-CTC, a novel encoder-only speech foundation model based on Connectionist Temporal Classification (CTC). It is trained on 180k hours of public audio data for multilingual automatic speech recognition (ASR), speech translation (ST), and language identification (LID). Compared to encoder-decoder OWSM, our OWSM-CTC achieves competitive results on ASR and up to 25% relative improvement on ST, while it is more robust and 3 to 4 times faster for inference. OWSM-CTC also improves the long-form ASR result with 20x speed-up. We will publicly release our codebase, pre-trained model, and training logs to promote open science in speech foundation models.

Depth perception is crucial for a wide range of robotic applications. Multi-frame self-supervised depth estimation methods have gained research interest due to their ability to leverage large-scale, unlabeled real-world data. However, the self-supervised methods often rely on the assumption of a static scene and their performance tends to degrade in dynamic environments. To address this issue, we present Motion-Aware Loss, which leverages the temporal relation among consecutive input frames and a novel distillation scheme between the teacher and student networks in the multi-frame self-supervised depth estimation methods. Specifically, we associate the spatial locations of moving objects with the temporal order of input frames to eliminate errors induced by object motion. Meanwhile, we enhance the original distillation scheme in multi-frame methods to better exploit the knowledge from a teacher network. MAL is a novel, plug-and-play module designed for seamless integration into multi-frame self-supervised monocular depth estimation methods. Adding MAL into previous state-of-the-art methods leads to a reduction in depth estimation errors by up to 4.2% and 10.8% on KITTI and CityScapes benchmarks, respectively.

Distribution shifts and adversarial examples are two major challenges for deploying machine learning models. While these challenges have been studied individually, their combination is an important topic that remains relatively under-explored. In this work, we study the problem of adversarial robustness under a common setting of distribution shift - unsupervised domain adaptation (UDA). Specifically, given a labeled source domain $D_S$ and an unlabeled target domain $D_T$ with related but different distributions, the goal is to obtain an adversarially robust model for $D_T$. The absence of target domain labels poses a unique challenge, as conventional adversarial robustness defenses cannot be directly applied to $D_T$. To address this challenge, we first establish a generalization bound for the adversarial target loss, which consists of (i) terms related to the loss on the data, and (ii) a measure of worst-case domain divergence. Motivated by this bound, we develop a novel unified defense framework called Divergence Aware adveRsarial Training (DART), which can be used in conjunction with a variety of standard UDA methods; e.g., DANN [Ganin and Lempitsky, 2015]. DART is applicable to general threat models, including the popular $\ell_p$-norm model, and does not require heuristic regularizers or architectural changes. We also release DomainRobust: a testbed for evaluating robustness of UDA models to adversarial attacks. DomainRobust consists of 4 multi-domain benchmark datasets (with 46 source-target pairs) and 7 meta-algorithms with a total of 11 variants. Our large-scale experiments demonstrate that on average, DART significantly enhances model robustness on all benchmarks compared to the state of the art, while maintaining competitive standard accuracy. The relative improvement in robustness from DART reaches up to 29.2% on the source-target domain pairs considered.

The drastic variation of motion in spatial and temporal dimensions makes the video prediction task extremely challenging. Existing RNN models obtain higher performance by deepening or widening the model. They obtain the multi-scale features of the video only by stacking layers, which is inefficient and brings unbearable training costs (such as memory, FLOPs, and training time). Different from them, this paper proposes a spatiotemporal multi-scale model called MS-LSTM wholly from a multi-scale perspective. On the basis of stacked layers, MS-LSTM incorporates two additional efficient multi-scale designs to fully capture spatiotemporal context information. Concretely, we employ LSTMs with mirrored pyramid structures to construct spatial multi-scale representations and LSTMs with different convolution kernels to construct temporal multi-scale representations. We theoretically analyze the training cost and performance of MS-LSTM and its components. Detailed comparison experiments with twelve baseline models on four video datasets show that MS-LSTM has better performance but lower training costs.

Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.

北京阿比特科技有限公司