It is widely known that males and females typically possess different sound characteristics when singing, such as timbre and pitch, but it has never been explored whether these gender-based characteristics lead to a performance disparity in singing voice transcription (SVT), whose target includes pitch. Such a disparity could cause fairness issues and severely affect the user experience of downstream SVT applications. Motivated by this, we first demonstrate the female superiority of SVT systems, which is observed across different models and datasets. We find that different pitch distributions, rather than gender data imbalance, contribute to this disparity. To address this issue, we propose using an attribute predictor to predict gender labels and adversarially training the SVT system to enforce the gender-invariance of acoustic representations. Leveraging the prior knowledge that pitch distributions may contribute to the gender bias, we propose conditionally aligning acoustic representations between demographic groups by feeding note events to the attribute predictor. Empirical experiments on multiple benchmark SVT datasets show that our method significantly reduces gender bias (up to more than 50%) with negligible degradation of overall SVT performance, on both in-domain and out-of-domain singing data, thus offering a better fairness-utility trade-off.
An emerging line of work has sought to generate plausible imagery from touch. Existing approaches, however, tackle only narrow aspects of the visuo-tactile synthesis problem, and lag significantly behind the quality of cross-modal synthesis methods in other domains. We draw on recent advances in latent diffusion to create a model for synthesizing images from tactile signals (and vice versa) and apply it to a number of visuo-tactile synthesis tasks. Using this model, we significantly outperform prior work on the tactile-driven stylization problem, i.e., manipulating an image to match a touch signal, and we are the first to successfully generate images from touch without additional sources of information about the scene. We also successfully use our model to address two novel synthesis problems: generating images that do not contain the touch sensor or the hand holding it, and estimating an image's shading from its reflectance and touch.
A rapidly growing number of voices have argued that AI research, and computer vision in particular, is closely tied to mass surveillance. Yet the direct path from computer vision research to surveillance has remained obscured and difficult to assess. This study reveals the Surveillance AI pipeline. We obtain three decades of computer vision research papers and downstream patents (more than 20,000 documents) and present a rich qualitative and quantitative analysis. This analysis exposes the nature and extent of the Surveillance AI pipeline, its institutional roots and evolution, and ongoing patterns of obfuscation. We first perform an in-depth content analysis of computer vision papers and downstream patents, identifying and quantifying key features and the many, often subtly expressed, forms of surveillance that appear. On the basis of this analysis, we present a topology of Surveillance AI that characterizes the prevalent targeting of human data, practices of data transferal, and institutional data use. We find stark evidence of close ties between computer vision and surveillance. The majority (68%) of annotated computer vision papers and patents self-report their technology enables data extraction about human bodies and body parts and even more (90%) enable data extraction about humans in general.
Kinship recognition aims to determine whether the subjects in two facial images are kin or non-kin, which is an emerging and challenging problem. However, most previous methods focus on heuristic designs without considering the spatial correlation between face images. In this paper, we aim to learn discriminative kinship representations embedded with the relation information between face components (e.g., eyes, nose, etc.). To achieve this goal, we propose the Face Componential Relation Network, which learns the relationship between face components among images with a cross-attention mechanism, which automatically learns the important facial regions for kinship recognition. Moreover, we propose Face Componential Relation Network (FaCoRNet), which adapts the loss function by the guidance from cross-attention to learn more discriminative feature representations. The proposed FaCoRNet outperforms previous state-of-the-art methods by large margins for the largest public kinship recognition FIW benchmark.
Contrastive speaker embedding assumes that the contrast between the positive and negative pairs of speech segments is attributed to speaker identity only. However, this assumption is incorrect because speech signals contain not only speaker identity but also linguistic content. In this paper, we propose a contrastive learning framework with sequential disentanglement to remove linguistic content by incorporating a disentangled sequential variational autoencoder (DSVAE) into the conventional SimCLR framework. The DSVAE aims to disentangle speaker factors from content factors in an embedding space so that only the speaker factors are used for constructing a contrastive loss objective. Because content factors have been removed from the contrastive learning, the resulting speaker embeddings will be content-invariant. Experimental results on VoxCeleb1-test show that the proposed method consistently outperforms SimCLR. This suggests that applying sequential disentanglement is beneficial to learning speaker-discriminative embeddings.
Affect recognition, encompassing emotions, moods, and feelings, plays a pivotal role in human communication. In the realm of conversational artificial intelligence (AI), the ability to discern and respond to human affective cues is a critical factor for creating engaging and empathetic interactions. This study delves into the capacity of large language models (LLMs) to recognise human affect in conversations, with a focus on both open-domain chit-chat dialogues and task-oriented dialogues. Leveraging three diverse datasets, namely IEMOCAP, EmoWOZ, and DAIC-WOZ, covering a spectrum of dialogues from casual conversations to clinical interviews, we evaluated and compared LLMs' performance in affect recognition. Our investigation explores the zero-shot and few-shot capabilities of LLMs through in-context learning (ICL) as well as their model capacities through task-specific fine-tuning. Additionally, this study takes into account the potential impact of automatic speech recognition (ASR) errors on LLM predictions. With this work, we aim to shed light on the extent to which LLMs can replicate human-like affect recognition capabilities in conversations.
Speech Emotion Recognition (SER) plays a pivotal role in enhancing human-computer interaction by enabling a deeper understanding of emotional states across a wide range of applications, contributing to more empathetic and effective communication. This study proposes an innovative approach that integrates self-supervised feature extraction with supervised classification for emotion recognition from small audio segments. In the preprocessing step, to eliminate the need of crafting audio features, we employed a self-supervised feature extractor, based on the Wav2Vec model, to capture acoustic features from audio data. Then, the output featuremaps of the preprocessing step are fed to a custom designed Convolutional Neural Network (CNN)-based model to perform emotion classification. Utilizing the ShEMO dataset as our testing ground, the proposed method surpasses two baseline methods, i.e. support vector machine classifier and transfer learning of a pretrained CNN. comparing the propose method to the state-of-the-art methods in SER task indicates the superiority of the proposed method. Our findings underscore the pivotal role of deep unsupervised feature learning in elevating the landscape of SER, offering enhanced emotional comprehension in the realm of human-computer interactions.
For a two-dimensional convex body, the Kovner-Besicovitch measure of symmetry is defined as the volume ratio of the largest centrally symmetric body contained inside the body to the original body. A classical result states that the Kovner-Besicovitch measure is at least $2/3$ for every convex body and equals $2/3$ for triangles. Lassak showed that an alternative measure of symmetry, i.e., symmetry about a line (axiality) has a value of at least $2/3$ for every convex body. However, the smallest known value of the axiality of a convex body is around $0.81584$, achieved by a convex quadrilateral. We show that every plane convex body has axiality at least $\frac{2}{41}(10 + 3 \sqrt{2}) \approx 0.69476$, thereby establishing a separation with the central symmetry measure. Moreover, we find a family of convex quadrilaterals with axiality approaching $\frac{1}{3}(\sqrt{2}+1) \approx 0.80474$. We also establish improved bounds for a ``folding" measure of axial symmetry for plane convex bodies. Finally, we establish improved bounds for a generalization of axiality to high-dimensional convex bodies.
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural speech given text, is a hot research topic in speech, language, and machine learning communities and has broad applications in the industry. As the development of deep learning and artificial intelligence, neural network-based TTS has significantly improved the quality of synthesized speech in recent years. In this paper, we conduct a comprehensive survey on neural TTS, aiming to provide a good understanding of current research and future trends. We focus on the key components in neural TTS, including text analysis, acoustic models and vocoders, and several advanced topics, including fast TTS, low-resource TTS, robust TTS, expressive TTS, and adaptive TTS, etc. We further summarize resources related to TTS (e.g., datasets, opensource implementations) and discuss future research directions. This survey can serve both academic researchers and industry practitioners working on TTS.