亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents an arbitrary Lagrangian Eulerian (ALE) method for the compressible two-phase flow ejecta transporting model with the HLLC-2D Riemann solver. We focus on researching the precise equation to describe the interactions between particle phase and flow phase. The calculation of the momentum and energy exchange across two phases is the key point during the procedure, which can be capable of maintaining the conservation of this system. For particles, tracking their trajectories within the mesh and elements is essential. Thereafter an ALE method instead of Lagrangian scheme is derived for the discretization of the equation to perform better with the complex motion of particles and flow. We apply the HLLC-2D Riemann solver to substitute the HLLC solver which relaxes the limitation for continuous fluxes along the edge. Meanwhile we propose a method for searching particles and provide a CFL-like condition based on this. Finally, we show some numerical tests to analysis the influence of particles on fluid and get a following effect between two phases. The model and the numerical method are validated through numerical tests to show its robustness and accuracy.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Engineering · 設計 · 代價 · Projection ·
2024 年 7 月 3 日

Aiming at the current mainstream 3D scene engine learning and building cost is too high, this thesis proposes a digital twin platform design program based on Unreal Engine 5 (UE5). It aims to provide a universal platform construction design process to effectively reduce the learning cost of large-scale scene construction. Taking an actual project of a unit as an example, the overall cycle work of platform building is explained, and the digital twin and data visualization technologies and applications based on UE5 are analyzed. By summarizing the project implementation into a process approach, the standardization and operability of the process pathway is improved.

Pretraining vision transformers (ViT) with attention guided masked image modeling (MIM) has shown to increase downstream accuracy for natural image analysis. Hierarchical shifted window (Swin) transformer, often used in medical image analysis cannot use attention guided masking as it lacks an explicit [CLS] token, needed for computing attention maps for selective masking. We thus enhanced Swin with semantic class attention. We developed a co-distilled Swin transformer that combines a noisy momentum updated teacher to guide selective masking for MIM. Our approach called \textsc{s}e\textsc{m}antic \textsc{a}ttention guided co-distillation with noisy teacher \textsc{r}egularized Swin \textsc{T}rans\textsc{F}ormer (SMARTFormer) was applied for analyzing 3D computed tomography datasets with lung nodules and malignant lung cancers (LC). We also analyzed the impact of semantic attention and noisy teacher on pretraining and downstream accuracy. SMARTFormer classified lesions (malignant from benign) with a high accuracy of 0.895 of 1000 nodules, predicted LC treatment response with accuracy of 0.74, and achieved high accuracies even in limited data regimes. Pretraining with semantic attention and noisy teacher improved ability to distinguish semantically meaningful structures such as organs in a unsupervised clustering task and localize abnormal structures like tumors. Code, models will be made available through GitHub upon paper acceptance.

We present an extension of the linear sampling method for solving the sound-soft inverse scattering problem in two dimensions with data generated by randomly distributed small scatterers. The theoretical justification of our novel sampling method is based on a rigorous asymptotic model, a modified Helmholtz--Kirchhoff identity, and our previous work on the linear sampling method for random sources. Our numerical implementation incorporates boundary elements, Singular Value Decomposition, Tikhonov regularization, and Morozov's discrepancy principle. We showcase the robustness and accuracy of our algorithms with a series of numerical experiments.

Generalized linear models (GLMs) arguably represent the standard approach for statistical regression beyond the Gaussian likelihood scenario. When Bayesian formulations are employed, the general absence of a tractable posterior distribution has motivated the development of deterministic approximations, which are generally more scalable than sampling techniques. Among them, expectation propagation (EP) showed extreme accuracy, usually higher than many variational Bayes solutions. However, the higher computational cost of EP posed concerns about its practical feasibility, especially in high-dimensional settings. We address these concerns by deriving a novel efficient formulation of EP for GLMs, whose cost scales linearly in the number of covariates p. This reduces the state-of-the-art O(p^2 n) per-iteration computational cost of the EP routine for GLMs to O(p n min{p,n}), with n being the sample size. We also show that, for binary models and log-linear GLMs approximate predictive means can be obtained at no additional cost. To preserve efficient moment matching for count data, we propose employing a combination of log-normal Laplace transform approximations, avoiding numerical integration. These novel results open the possibility of employing EP in settings that were believed to be practically impossible. Improvements over state-of-the-art approaches are illustrated both for simulated and real data. The efficient EP implementation is available at //github.com/niccoloanceschi/EPglm.

In the common partially linear single-index model we establish a Bahadur representation for a smoothing spline estimator of all model parameters and use this result to prove the joint weak convergence of the estimator of the index link function at a given point, together with the estimators of the parametric regression coefficients. We obtain the surprising result that, despite of the nature of single-index models where the link function is evaluated at a linear combination of the index-coefficients, the estimator of the link function and the estimator of the index-coefficients are asymptotically independent. Our approach leverages a delicate analysis based on reproducing kernel Hilbert space and empirical process theory. We show that the smoothing spline estimator achieves the minimax optimal rate with respect to the $L^2$-risk and consider several statistical applications where joint inference on all model parameters is of interest. In particular, we develop a simultaneous confidence band for the link function and propose inference tools to investigate if the maximum absolute deviation between the (unknown) link function and a given function exceeds a given threshold. We also construct tests for joint hypotheses regarding model parameters which involve both the nonparametric and parametric components and propose novel multiplier bootstrap procedures to avoid the estimation of unknown asymptotic quantities.

We present a space-time continuous-Galerkin finite element method for solving incompressible Navier-Stokes equations. To ensure stability of the discrete variational problem, we apply ideas from the variational multi-scale method. The finite element problem is posed on the ``full" space-time domain, considering time as another dimension. We provide a rigorous analysis of the stability and convergence of the stabilized formulation. And finally, we apply this method on two benchmark problems in computational fluid dynamics, namely, lid-driven cavity flow and flow past a circular cylinder. We validate the current method with existing results from literature and show that very large space-time blocks can be solved using our approach.

We propose a novel framework of generalised Petrov-Galerkin Dynamical Low Rank Approximations (DLR) in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov-Galerkin methods. The framework is subsequently applied to the case of Streamine Upwind/Petrov Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.

We present a new hybrid semi-implicit finite volume / finite element numerical scheme for the solution of incompressible and weakly compressible media. From the continuum mechanics model proposed by Godunov, Peshkov and Romenski (GPR), we derive the incompressible GPR formulation as well as a weakly compressible GPR system. As for the original GPR model, the new formulations are able to describe different media, from elastoplastic solids to viscous fluids, depending on the values set for the model's relaxation parameters. Then, we propose a new numerical method for the solution of both models based on the splitting of the original systems into three subsystems: one containing the convective part and non-conservative products, a second subsystem for the source terms of the distortion tensor and heat flux equations and, finally, a pressure subsystem. In the first stage of the algorithm, the transport subsystem is solved by employing an explicit finite volume method, while the source terms are solved implicitly. Next, the pressure subsystem is implicitly discretised using finite elements. Within this methodology, unstructured grids are employed, with the pressure defined in the primal grid and the rest of the variables computed in the dual grid. To evaluate the performance of the proposed scheme, a numerical convergence analysis is carried out, which confirms the second order of accuracy in space. A wide range of benchmarks is reproduced for the incompressible and weakly compressible cases, considering both solid and fluid media. These results demonstrate the good behaviour and robustness of the proposed scheme in a variety of scenarios and conditions.

We present neural network-based constitutive models for hyperelastic geometrically exact beams. The proposed models are physics-augmented, i.e., formulated to fulfill important mechanical conditions by construction. Strains and curvatures of the beam are used as input for feed-forward neural networks that represent the effective hyperelastic beam potential. Forces and moments are then received as the gradients of the beam potential, ensuring thermodynamic consistency. Furthermore, normalization conditions are considered via additional projection terms. To include the symmetry of beams with point-symmetric cross-sections, a flip symmetry constraint is introduced. Additionally, parameterized models are proposed that can represent the beam's constitutive behavior for varying cross-sectional geometries. The physically motivated parameterization takes into account the influence of the beam radius on the beam potential. Formulating the beam potential as a neural network provides a highly flexible model. This enables efficient constitutive surrogate modeling for geometrically exact beams with nonlinear material behavior and cross-sectional deformation, which otherwise would require computationally much more expensive methods. The models are calibrated to data generated for beams with circular, deformable cross-sections and varying radii, showing excellent accuracy and generalization. The applicability of the proposed model is further demonstrated by applying it in beam simulations. In all studied cases, the proposed model shows excellent performance.

This work aims to introduce a heuristic timestep-adaptive algorithm for Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI) problems where the flow is dominated by the pressure. In such scenarios, many time-adaptive algorithms based on the interplay of implicit and explicit time schemes fail to capture the fast transient dynamics of pressure fields. We present an algorithm that relies on a temporal error estimator using Backward Differentiation Formulae (BDF$k$) of order $k=2,3$. Specifically, we demonstrate that the implicit BDF$3$ solution can be well approximated by applying a single Newton-type nonlinear solver correction to the implicit BDF$2$ solution. The difference between these solutions determines our adaptive temporal error estimator. The effectiveness of our approach is confirmed by numerical experiments conducted on a backward-facing step flow CFD test case with Reynolds number $300$ and on a two-dimensional haemodynamics FSI benchmark.

北京阿比特科技有限公司