Search-based approaches have been used in the literature to automate the process of creating unit test cases. However, related work has shown that generated unit-tests with high code coverage could be ineffective, i.e., they may not detect all faults or kill all injected mutants. In this paper, we propose CLING, an integration-level test case generation approach that exploits how a pair of classes, the caller and the callee, interact with each other through method calls. In particular, CLING generates integration-level test cases that maximize the Coupled Branches Criterion (CBC). Coupled branches are pairs of branches containing a branch of the caller and a branch of the callee such that an integration test that exercises the former also exercises the latter. CBC is a novel integration-level coverage criterion, measuring the degree to which a test suite exercises the interactions between a caller and its callee classes. We implemented CLING and evaluated the approach on 140 pairs of classes from five different open-source Java projects. Our results show that (1) CLING generates test suites with high CBC coverage, thanks to the definition of the test suite generation as a many-objectives problem where each couple of branches is an independent objective; (2) such generated suites trigger different class interactions and can kill on average 7.7% (with a maximum of 50%) of mutants that are not detected by tests generated at the unit level; (3) CLING can detect integration faults coming from wrong assumptions about the usage of the callee class (32 for our subject systems) that remain undetected when using automatically generated unit-level test suites.
The opaqueness of deep NLP models has motivated the development of methods for interpreting how deep models predict. Recently, work has introduced hierarchical attribution, which produces a hierarchical clustering of words, along with an attribution score for each cluster. However, existing work on hierarchical attribution all follows the connecting rule, limiting the cluster to a continuous span in the input text. We argue that the connecting rule as an additional prior may undermine the ability to reflect the model decision process faithfully. To this end, we propose to generate hierarchical explanations without the connecting rule and introduce a framework for generating hierarchical clusters. Experimental results and further analysis show the effectiveness of the proposed method in providing high-quality explanations for reflecting model predicting process.
This study is about inducing classifiers using data that is imbalanced, with a minority class being under-represented in relation to the majority classes. The first section of this research focuses on the main characteristics of data that generate this problem. Following a study of previous, relevant research, a variety of artificial, imbalanced data sets influenced by important elements were created. These data sets were used to create decision trees and rule-based classifiers. The second section of this research looks into how to improve classifiers by pre-processing data with resampling approaches. The results of the following trials are compared to the performance of distinct pre-processing re-sampling methods: two variants of random over-sampling and focused under-sampling NCR. This paper further optimises class imbalance with a new method called Sparsity. The data is made more sparse from its class centers, hence making it more homogenous.
In the online world, Machine Translation (MT) systems are extensively used to translate User-Generated Text (UGT) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. However, MT systems still lack accuracy in some low-resource languages and sometimes make critical translation errors that completely flip the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. This is particularly noticeable in texts that do not follow common lexico-grammatical standards such as the dialectical Arabic (DA) used on online platforms. In this research, we aim to improve the translation of sentiment in UGT written in the dialectical versions of the Arabic language to English. Given the scarcity of gold-standard parallel data for DA-EN in the UGT domain, we introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system initialised by a cross-lingual language model trained with supervised and unsupervised modeling objectives. We assess the accuracy of sentiment translation by our proposed system through a numerical 'sentiment-closeness' measure as well as human evaluation. We will show that our semi-supervised MT system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT.
Text line segmentation is one of the key steps in historical document understanding. It is challenging due to the variety of fonts, contents, writing styles and the quality of documents that have degraded through the years. In this paper, we address the limitations that currently prevent people from building line segmentation models with a high generalization capacity. We present a study conducted using three state-of-the-art systems Doc-UFCN, dhSegment and ARU-Net and show that it is possible to build generic models trained on a wide variety of historical document datasets that can correctly segment diverse unseen pages. This paper also highlights the importance of the annotations used during training: each existing dataset is annotated differently. We present a unification of the annotations and show its positive impact on the final text recognition results. In this end, we present a complete evaluation strategy using standard pixel-level metrics, object-level ones and introducing goal-oriented metrics.
A key part of learning to program is learning to understand programming error messages. They can be hard to interpret and identifying the cause of errors can be time-consuming. One factor in this challenge is that the messages are typically intended for an audience that already knows how to program, or even for programming environments that then use the information to highlight areas in code. Researchers have been working on making these errors more novice friendly since the 1960s, however progress has been slow. The present work contributes to this stream of research by using large language models to enhance programming error messages with explanations of the errors and suggestions on how to fix the error. Large language models can be used to create useful and novice-friendly enhancements to programming error messages that sometimes surpass the original programming error messages in interpretability and actionability. These results provide further evidence of the benefits of large language models for computing educators, highlighting their use in areas known to be challenging for students. We further discuss the benefits and downsides of large language models and highlight future streams of research for enhancing programming error messages.
In fault detection and diagnosis of prognostics and health management (PHM) systems, most of the methodologies utilize machine learning (ML) or deep learning (DL) through which either some features are extracted beforehand (in the case of ML) or filters are used to extract features autonomously (in case of DL) to perform the critical classification task. Particularly in the fault detection and diagnosis of industrial robots where electric current, vibration or acoustic emissions signals are the primary sources of information, a feature domain that can map the signals into their constituent components with compressed information at different levels can reduce the complexities and size of typical ML and DL-based frameworks. The Deep Scattering Spectrum (DSS) is one of the strategies that use the Wavelet Transform (WT) analogy to separate and extract the information encoded in a signal's various temporal and frequency domains. As a result, the focus of this work is on the study of the DSS's relevance to fault detection and daignosis for mechanical components of industrail robots. We used multiple industrial robots and distinct mechanical faults to build an approach for classifying the faults using low-variance features extracted from the input signals. The presented approach was implemented on the practical test benches and demonstrated satisfactory performance in fault detection and diagnosis for simple and complex classification problems with a classification accuracy of 99.7% and 88.1%, respectively.
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.