亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unlearning methods for recommender systems (RS) have emerged to address privacy issues and concerns about legal compliance. However, evolving user preferences and content licensing issues still remain unaddressed. This is particularly true in case of multi-modal recommender systems (MMRS), which aim to accommodate the growing influence of multi-modal information on user preferences. Previous unlearning methods for RS are inapplicable to MMRS due to incompatibility of multi-modal user-item behavior data graph with the matrix based representation of RS. Partitioning based methods degrade recommendation performance and incur significant overhead costs during aggregation. This paper introduces MMRecUN, a new framework for multi-modal recommendation unlearning, which, to the best of our knowledge, is the first attempt in this direction. Given the trained recommendation model and marked forget data, we devise Reverse Bayesian Personalized Ranking (BPR) objective to force the model to forget it. MMRecUN employs both reverse and forward BPR loss mechanisms to selectively attenuate the impact of interactions within the forget set while concurrently reinforcing the significance of interactions within the retain set. Our experiments demonstrate that MMRecUN outperforms baseline methods across various unlearning requests when evaluated on benchmark multi-modal recommender datasets. MMRecUN achieves recall performance improvements of up to $\mathbf{49.85%}$ compared to the baseline methods. It is up to $\mathbf{1.3}\times$ faster than the \textsc{Gold} model, which is trained on retain data from scratch. MMRecUN offers advantages such as superior performance in removing target elements, preservation of performance for retained elements, and zero overhead costs in comparison to previous methods.

相關內容

Automatic readability assessment is relevant to building NLP applications for education, content analysis, and accessibility. However, Arabic readability assessment is a challenging task due to Arabic's morphological richness and limited readability resources. In this paper, we present a set of experimental results on Arabic readability assessment using a diverse range of approaches, from rule-based methods to Arabic pretrained language models. We report our results on a newly created corpus at different textual granularity levels (words and sentence fragments). Our results show that combining different techniques yields the best results, achieving an overall macro F1 score of 86.7 at the word level and 87.9 at the fragment level on a blind test set. We make our code, data, and pretrained models publicly available.

The transformer networks are extensively utilized in face forgery detection due to their scalability across large datasets.Despite their success, transformers face challenges in balancing the capture of global context, which is crucial for unveiling forgery clues, with computational complexity.To mitigate this issue, we introduce Band-Attention modulated RetNet (BAR-Net), a lightweight network designed to efficiently process extensive visual contexts while avoiding catastrophic forgetting.Our approach empowers the target token to perceive global information by assigning differential attention levels to tokens at varying distances. We implement self-attention along both spatial axes, thereby maintaining spatial priors and easing the computational burden.Moreover, we present the adaptive frequency Band-Attention Modulation mechanism, which treats the entire Discrete Cosine Transform spectrogram as a series of frequency bands with learnable weights.Together, BAR-Net achieves favorable performance on several face forgery datasets, outperforming current state-of-the-art methods.

One of the more complex tasks for researchers using HPC systems is performance monitoring and tuning of their applications. Developing a practice of continuous performance improvement, both for speed-up and efficient use of resources is essential to the long term success of both the HPC practitioner and the research project. Profiling tools provide a nice view of the performance of an application but often have a steep learning curve and rarely provide an easy to interpret view of resource utilization. Lower level tools such as top and htop provide a view of resource utilization for those familiar and comfortable with Linux but a barrier for newer HPC practitioners. To expand the existing profiling and job monitoring options, the MIT Lincoln Laboratory Supercomputing Center created LLoad, a tool that captures a snapshot of the resources being used by a job on a per user basis. LLload is a tool built from standard HPC tools that provides an easy way for a researcher to track resource usage of active jobs. We explain how the tool was designed and implemented and provide insight into how it is used to aid new researchers in developing their performance monitoring skills as well as guide researchers in their resource requests.

Enhancing the sparsity of data-driven reduced-order models (ROMs) has gained increasing attention in recent years. In this work, we analyze an efficient approach to identifying skillful ROMs with a sparse structure using an information-theoretic indicator called causation entropy. The causation entropy quantifies in a statistical way the additional contribution of each term to the underlying dynamics beyond the information already captured by all the other terms in the ansatz. By doing so, the causation entropy assesses the importance of each term to the dynamics before a parameter estimation procedure is performed. Thus, the approach can be utilized to eliminate terms with little dynamic impact, leading to a parsimonious structure that retains the essential physics. To circumvent the difficulty of estimating high-dimensional probability density functions (PDFs) involved in the causation entropy computation, we leverage Gaussian approximations for such PDFs, which are demonstrated to be sufficient even in the presence of highly non-Gaussian dynamics. The effectiveness of the approach is illustrated by the Kuramoto-Sivashinsky equation by building sparse causation-based ROMs for various purposes, such as recovering long-term statistics and inferring unobserved dynamics via data assimilation with partial observations.

Over the last decade, the Kubernetes container orchestration platform has become essential to many scientific workflows. Despite its popularity, deploying a production-ready Kubernetes cluster on-premises can be challenging for system administrators. Many of the proprietary integrations that application developers take for granted in commercial cloud environments must be replaced with alternatives when deployed locally. This article will compare three popular deployment strategies for sites deploying Kubernetes on-premise: Kubeadm with Kubespray, OpenShift / OKD and Rancher via K3S/RKE2.

The transformer architecture and variants presented remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task -- which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments.

With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

北京阿比特科技有限公司