亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This thesis aims to study some of the mathematical challenges that arise in the analysis of statistical sequential decision-making algorithms for postoperative patients follow-up. Stochastic bandits (multiarmed, contextual) model the learning of a sequence of actions (policy) by an agent in an uncertain environment in order to maximise observed rewards. To learn optimal policies, bandit algorithms have to balance the exploitation of current knowledge and the exploration of uncertain actions. Such algorithms have largely been studied and deployed in industrial applications with large datasets, low-risk decisions and clear modelling assumptions, such as clickthrough rate maximisation in online advertising. By contrast, digital health recommendations call for a whole new paradigm of small samples, risk-averse agents and complex, nonparametric modelling. To this end, we developed new safe, anytime-valid concentration bounds, (Bregman, empirical Chernoff), introduced a new framework for risk-aware contextual bandits (with elicitable risk measures) and analysed a novel class of nonparametric bandit algorithms under weak assumptions (Dirichlet sampling). In addition to the theoretical guarantees, these results are supported by in-depth empirical evidence. Finally, as a first step towards personalised postoperative follow-up recommendations, we developed with medical doctors and surgeons an interpretable machine learning model to predict the long-term weight trajectories of patients after bariatric surgery.

相關內容

We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter $\varepsilon$ and regularization parameter $\beta$ explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

This paper contributes to the mathematical foundations of logic programming by introducing and studying the sequential composition of answer set programs. On the semantic side, we show that the immediate consequence operator of a program can be represented via composition, which allows us to compute the least model semantics of Horn programs without any explicit reference to operators. As a result, we can characterize answer sets algebraically, which further provides an algebraic characterization of strong and uniform equivalence which is appealing. This bridges the conceptual gap between the syntax and semantics of an answer set program in a mathematically satisfactory way. The so-obtained algebraization of answer set programming allows us to transfer algebraic concepts into the ASP-setting which we demonstrate by introducing the index and period of an answer set program as an algebraic measure of its cyclicality. The technical part of the paper ends with a brief section introducing the algebraically inspired novel class of aperiodic answer set programs strictly containing the acyclic ones. In a broader sense, this paper is a first step towards an algebra of answer set programs and in the future we plan to lift the methods of this paper to wider classes of programs, most importantly to higher-order and disjunctive programs and extensions thereof.

The quest for successful variational quantum machine learning (QML) relies on the design of suitable parametrized quantum circuits (PQCs), as analogues to neural networks in classical machine learning. Successful QML models must fulfill the properties of trainability and non-dequantization, among others. Recent works have highlighted an intricate interplay between trainability and dequantization of such models, which is still unresolved. In this work we contribute to this debate from the perspective of machine learning, proving a number of results identifying, among others when trainability and non-dequantization are not mutually exclusive. We begin by providing a number of new somewhat broader definitions of the relevant concepts, compared to what is found in other literature, which are operationally motivated, and consistent with prior art. With these precise definitions given and motivated, we then study the relation between trainability and dequantization of variational QML. Next, we also discuss the degrees of "variationalness" of QML models, where we distinguish between models like the hardware efficient ansatz and quantum kernel methods. Finally, we introduce recipes for building PQC-based QML models which are both trainable and nondequantizable, and corresponding to different degrees of variationalness. We do not address the practical utility for such models. Our work however does point toward a way forward for finding more general constructions, for which finding applications may become feasible.

We consider a convex constrained Gaussian sequence model and characterize necessary and sufficient conditions for the least squares estimator (LSE) to be optimal in a minimax sense. For a closed convex set $K\subset \mathbb{R}^n$ we observe $Y=\mu+\xi$ for $\xi\sim N(0,\sigma^2\mathbb{I}_n)$ and $\mu\in K$ and aim to estimate $\mu$. We characterize the worst case risk of the LSE in multiple ways by analyzing the behavior of the local Gaussian width on $K$. We demonstrate that optimality is equivalent to a Lipschitz property of the local Gaussian width mapping. We also provide theoretical algorithms that search for the worst case risk. We then provide examples showing optimality or suboptimality of the LSE on various sets, including $\ell_p$ balls for $p\in[1,2]$, pyramids, solids of revolution, and multivariate isotonic regression, among others.

This paper concerns a class of DC composite optimization problems which, as an extension of convex composite optimization problems and DC programs with nonsmooth components, often arises in robust factorization models of low-rank matrix recovery. For this class of nonconvex and nonsmooth problems, we propose an inexact linearized proximal algorithm (iLPA) by computing in each step an inexact minimizer of a strongly convex majorization constructed with a partial linearization of their objective functions at the current iterate, and establish the convergence of the generated iterate sequence under the Kurdyka-\L\"ojasiewicz (KL) property of a potential function. In particular, by leveraging the composite structure, we provide a verifiable condition for the potential function to have the KL property of exponent $1/2$ at the limit point, so for the iterate sequence to have a local R-linear convergence rate. Finally, we apply the proposed iLPA to a robust factorization model for matrix completions with outliers and non-uniform sampling, and numerical comparison with a proximal alternating minimization (PAM) method confirms iLPA yields the comparable relative errors or NMAEs within less running time, especially for large-scale real data.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme, obtain a global reliability bound, and investigate local efficiency estimates.

We study an interacting particle method (IPM) for computing the large deviation rate function of entropy production for diffusion processes, with emphasis on the vanishing-noise limit and high dimensions. The crucial ingredient to obtain the rate function is the computation of the principal eigenvalue $\lambda$ of elliptic, non-self-adjoint operators. We show that this principal eigenvalue can be approximated in terms of the spectral radius of a discretized evolution operator obtained from an operator splitting scheme and an Euler--Maruyama scheme with a small time step size, and we show that this spectral radius can be accessed through a large number of iterations of this discretized semigroup, suitable for the IPM. The IPM applies naturally to problems in unbounded domains, scales easily to high dimensions, and adapts to singular behaviors in the vanishing-noise limit. We show numerical examples in dimensions up to 16. The numerical results show that our numerical approximation of $\lambda$ converges to the analytical vanishing-noise limit within visual tolerance with a fixed number of particles and a fixed time step size. Our paper appears to be the first one to obtain numerical results of principal eigenvalue problems for non-self-adjoint operators in such high dimensions.

We present a dimension-incremental method for function approximation in bounded orthonormal product bases to learn the solutions of various differential equations. Therefore, we deconstruct the source function of the differential equation into parameters like Fourier or Spline coefficients and treat the solution of the differential equation as a high-dimensional function w.r.t. the spatial variables, these parameters and also further possible parameters from the differential equation itself. Finally, we learn this function in the sense of sparse approximation in a suitable function space by detecting coefficients of the basis expansion with largest absolute value. Investigating the corresponding indices of the basis coefficients yields further insights on the structure of the solution as well as its dependency on the parameters and their interactions and allows for a reasonable generalization to even higher dimensions and therefore better resolutions of the deconstructed source function.

We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) of belonging to a given set is less than a given threshold. This problem, which we call Quantile Set Inversion (QSI), occurs for instance in the context of robust (reliability-based) optimization problems, when looking for the set of solutions that satisfy the constraints with sufficiently large probability. To solve the QSI problem we propose a Bayesian strategy, based on Gaussian process modeling and the Stepwise Uncertainty Reduction (SUR) principle, to sequentially choose the points at which the function should be evaluated to efficiently approximate the set of interest. We illustrate the performance and interest of the proposed SUR strategy through several numerical experiments.

北京阿比特科技有限公司