亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Choice problems refer to selecting the best choices from several items, and learning users' preferences in choice problems is of great significance in understanding the decision making mechanisms and providing personalized services. Existing works typically assume that people evaluate items independently. In practice, however, users' preferences depend on the market in which items are placed, which is known as context effects; and the order of users' preferences for two items may even be reversed, which is referred to preference reversals. In this work, we identify three factors contributing to context effects: users' adaptive weights, the inter-item comparison, and display positions. We propose a context-dependent preference model named Pacos as a unified framework for addressing three factors simultaneously, and consider two design methods including an additive method with high interpretability and an ANN-based method with high accuracy. We study the conditions for preference reversals to occur and provide an theoretical proof of the effectiveness of Pacos in addressing preference reversals. Experimental results show that the proposed method has better performance than prior works in predicting users' choices, and has great interpretability to help understand the cause of preference reversals.

相關內容

Most existing retrieval-augmented language models (LMs) for question answering assume all retrieved information is factually correct. In this work, we study a more realistic scenario in which retrieved documents may contain misinformation, causing conflicts among them. We observe that the existing models are highly brittle to such information in both fine-tuning and in-context few-shot learning settings. We propose approaches to make retrieval-augmented LMs robust to misinformation by explicitly fine-tuning a discriminator or prompting to elicit discrimination capability in GPT-3. Our empirical results on open-domain question answering show that these approaches significantly improve LMs' robustness to knowledge conflicts. We also provide our findings on interleaving the fine-tuned model's decision with the in-context learning process, paving a new path to leverage the best of both worlds.

Structured interviews are used in many settings, importantly in market research on topics such as brand perception, customer habits, or preferences, which are critical to product development, marketing, and e-commerce at large. Such interviews generally consist of a series of questions that are asked to a participant. These interviews are typically conducted by skilled interviewers, who interpret the responses from the participants and can adapt the interview accordingly. Using automated conversational agents to conduct such interviews would enable reaching a much larger and potentially more diverse group of participants than currently possible. However, the technical challenges involved in building such a conversational system are relatively unexplored. To learn more about these challenges, we convert a market research multiple-choice questionnaire to a conversational format and conduct a user study. We address the key task of conducting structured interviews, namely interpreting the participant's response, for example, by matching it to one or more predefined options. Our findings can be applied to improve response interpretation for the information elicitation phase of conversational recommender systems.

We present an alternative to reweighting techniques for modifying distributions to account for a desired change in an underlying conditional distribution, as is often needed to correct for mis-modelling in a simulated sample. We employ conditional normalizing flows to learn the full conditional probability distribution from which we sample new events for conditional values drawn from the target distribution to produce the desired, altered distribution. In contrast to common reweighting techniques, this procedure is independent of binning choice and does not rely on an estimate of the density ratio between two distributions. In several toy examples we show that normalizing flows outperform reweighting approaches to match the distribution of the target.We demonstrate that the corrected distribution closes well with the ground truth, and a statistical uncertainty on the training dataset can be ascertained with bootstrapping. In our examples, this leads to a statistical precision up to three times greater than using reweighting techniques with identical sample sizes for the source and target distributions. We also explore an application in the context of high energy particle physics.

We present algorithms based on satisfiability problem (SAT) solving, as well as answer set programming (ASP), for solving the problem of determining inconsistency degrees in propositional knowledge bases. We consider six different inconsistency measures whose respective decision problems lie on the first level of the polynomial hierarchy. Namely, these are the contension inconsistency measure, the forgetting-based inconsistency measure, the hitting set inconsistency measure, the max-distance inconsistency measure, the sum-distance inconsistency measure, and the hit-distance inconsistency measure. In an extensive experimental analysis, we compare the SAT-based and ASP-based approaches with each other, as well as with a set of naive baseline algorithms. Our results demonstrate that overall, both the SAT-based and the ASP-based approaches clearly outperform the naive baseline methods in terms of runtime. The results further show that the proposed ASP-based approaches perform superior to the SAT-based ones with regard to all six inconsistency measures considered in this work. Moreover, we conduct additional experiments to explain the aforementioned results in greater detail.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司