We show that the `optimal' use of the parallel composition theorem corresponds to finding the size of the largest subset of queries that `overlap' on the data domain, a quantity we call the \emph{maximum overlap} of the queries. It has previously been shown that a certain instance of this problem, formulated in terms of determining the sensitivity of the queries, is NP-hard, but also that it is possible to use graph-theoretic algorithms, such as finding the maximum clique, to approximate query sensitivity. In this paper, we consider a significant generalization of the aforementioned instance which encompasses both a wider range of differentially private mechanisms and a broader class of queries. We show that for a particular class of predicate queries, determining if they are disjoint can be done in time polynomial in the number of attributes. For this class, we show that the maximum overlap problem remains NP-hard as a function of the number of queries. However, we show that efficient approximate solutions exist by relating maximum overlap to the clique and chromatic numbers of a certain graph determined by the queries. The link to chromatic number allows us to use more efficient approximate algorithms, which cannot be done for the clique number as it may underestimate the privacy budget. Our approach is defined in the general setting of $f$-differential privacy, which subsumes standard pure differential privacy and Gaussian differential privacy. We prove the parallel composition theorem for $f$-differential privacy. We evaluate our approach on synthetic and real-world data sets of queries. We show that the approach can scale to large domain sizes (up to $10^{20000}$), and that its application can reduce the noise added to query answers by up to 60\%.
Recent research in differential privacy demonstrated that (sub)sampling can amplify the level of protection. For example, for $\epsilon$-differential privacy and simple random sampling with sampling rate $r$, the actual privacy guarantee is approximately $r\epsilon$, if a value of $\epsilon$ is used to protect the output from the sample. In this paper, we study whether this amplification effect can be exploited systematically to improve the accuracy of the privatized estimate. Specifically, assuming the agency has information for the full population, we ask under which circumstances accuracy gains could be expected, if the privatized estimate would be computed on a random sample instead of the full population. We find that accuracy gains can be achieved for certain regimes. However, gains can typically only be expected, if the sensitivity of the output with respect to small changes in the database does not depend too strongly on the size of the database. We only focus on algorithms that achieve differential privacy by adding noise to the final output and illustrate the accuracy implications for two commonly used statistics: the mean and the median. We see our research as a first step towards understanding the conditions required for accuracy gains in practice and we hope that these findings will stimulate further research broadening the scope of differential privacy algorithms and outputs considered.
We introduce a universal framework for characterizing the statistical efficiency of a statistical estimation problem with differential privacy guarantees. Our framework, which we call High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Gluing all these together is the concept of resilience, which is central to robust statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release. The key insight is that if we design an exponential mechanism that accesses the data only via one-dimensional robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to a given instance of a statistical estimation problem and demonstrate it on canonical problems of mean estimation, linear regression, covariance estimation, and principal component analysis. We introduce a general utility analysis technique that proves that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
The arrival of Immersive Virtual and Augmented Reality hardware to the consumer market suggests seamless multi-modal communication between human participants and autonomous interactive characters is an achievable goal in the near future. This possibility is further reinforced by the rapid improvements in the automated analysis of speech, facial expressions and body language, as well as improvements in character animation and speech synthesis techniques. However, we do not have a formal theory that allows us to compare, on one side, interactive social scenarios among human users and autonomous virtual characters and, on the other side, pragmatic inference mechanisms as they occur in non-mediated communication. Grices' and Sperbers' model of inferential communication does explain the nature of everyday communication through cognitive mechanisms that support spontaneous inferences performed in pragmatic communication. However, such a theory is not based on a mathematical framework with a precision comparable to classical information theory. To address this gap, in this article we introduce a Mathematical Theory of Inferential Communication (MaTIC). MaTIC formalises some assumptions of inferential communication, it explores its theoretical consequences and outlines the practical steps needed to use it in different application scenarios.
Gaussian processes (GPs) are non-parametric Bayesian models that are widely used for diverse prediction tasks. Previous work in adding strong privacy protection to GPs via differential privacy (DP) has been limited to protecting only the privacy of the prediction targets (model outputs) but not inputs. We break this limitation by introducing GPs with DP protection for both model inputs and outputs. We achieve this by using sparse GP methodology and publishing a private variational approximation on known inducing points. The approximation covariance is adjusted to approximately account for the added uncertainty from DP noise. The approximation can be used to compute arbitrary predictions using standard sparse GP techniques. We propose a method for hyperparameter learning using a private selection protocol applied to validation set log-likelihood. Our experiments demonstrate that given sufficient amount of data, the method can produce accurate models under strong privacy protection.
The multi-armed bandit (MAB) problem is an active learning framework that aims to select the best among a set of actions by sequentially observing rewards. Recently, it has become popular for a number of applications over wireless networks, where communication constraints can form a bottleneck. Existing works usually fail to address this issue and can become infeasible in certain applications. In this paper we address the communication problem by optimizing the communication of rewards collected by distributed agents. By providing nearly matching upper and lower bounds, we tightly characterize the number of bits needed per reward for the learner to accurately learn without suffering additional regret. In particular, we establish a generic reward quantization algorithm, QuBan, that can be applied on top of any (no-regret) MAB algorithm to form a new communication-efficient counterpart, that requires only a few (as low as 3) bits to be sent per iteration while preserving the same regret bound. Our lower bound is established via constructing hard instances from a subgaussian distribution. Our theory is further corroborated by numerically experiments.
Discrete data are abundant and often arise as counts or rounded data. Yet even for linear regression models, conjugate priors and closed-form posteriors are typically unavailable, which necessitates approximations such as MCMC for posterior inference. For a broad class of count and rounded data regression models, we introduce conjugate priors that enable closed-form posterior inference. Key posterior and predictive functionals are computable analytically or via direct Monte Carlo simulation. Crucially, the predictive distributions are discrete to match the support of the data and can be evaluated or simulated jointly across multiple covariate values. These tools are broadly useful for linear regression, nonlinear models via basis expansions, and model and variable selection. Multiple simulation studies demonstrate significant advantages in computing, predictive modeling, and selection relative to existing alternatives.
Differential privacy is becoming one gold standard for protecting the privacy of publicly shared data. It has been widely used in social science, data science, public health, information technology, and the U.S. decennial census. Nevertheless, to guarantee differential privacy, existing methods may unavoidably alter the conclusion of original data analysis, as privatization often changes the sample distribution. This phenomenon is known as the trade-off between privacy protection and statistical accuracy. In this work, we break this trade-off by developing a distribution-invariant privatization (DIP) method to reconcile both high statistical accuracy and strict differential privacy. As a result, any downstream statistical or machine learning task yields essentially the same conclusion as if one used the original data. Numerically, under the same strictness of privacy protection, DIP achieves superior statistical accuracy in two simulations and on three real-world benchmarks.
Knowledge graph embedding plays an important role in knowledge representation, reasoning, and data mining applications. However, for multiple cross-domain knowledge graphs, state-of-the-art embedding models cannot make full use of the data from different knowledge domains while preserving the privacy of exchanged data. In addition, the centralized embedding model may not scale to the extensive real-world knowledge graphs. Therefore, we propose a novel decentralized scalable learning framework, \emph{Federated Knowledge Graphs Embedding} (FKGE), where embeddings from different knowledge graphs can be learnt in an asynchronous and peer-to-peer manner while being privacy-preserving. FKGE exploits adversarial generation between pairs of knowledge graphs to translate identical entities and relations of different domains into near embedding spaces. In order to protect the privacy of the training data, FKGE further implements a privacy-preserving neural network structure to guarantee no raw data leakage. We conduct extensive experiments to evaluate FKGE on 11 knowledge graphs, demonstrating a significant and consistent improvement in model quality with at most 17.85\% and 7.90\% increases in performance on triple classification and link prediction tasks.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.