Domain-specific fine-tuning strategies for large pre-trained models received vast attention in recent years. In previously studied settings, the model architectures and parameters are tunable or at least visible, which we refer to as white-box settings. This work considers a new scenario, where we do not have access to a pre-trained model, except for its outputs given inputs, and we call this problem black-box fine-tuning. To illustrate our approach, we first introduce the black-box setting formally on text classification, where the pre-trained model is not only frozen but also invisible. We then propose our solution black-box prompt, a new technique in the prompt-learning family, which can leverage the knowledge learned by pre-trained models from the pre-training corpus. Our experiments demonstrate that the proposed method achieved the state-of-the-art performance on eight datasets. Further analyses on different human-designed objectives, prompt lengths, and intuitive explanations demonstrate the robustness and flexibility of our method.
Recent advances in natural language processing (NLP) have led to strong text classification models for many tasks. However, still often thousands of examples are needed to train models with good quality. This makes it challenging to quickly develop and deploy new models for real world problems and business needs. Few-shot learning and active learning are two lines of research, aimed at tackling this problem. In this work, we combine both lines into FASL, a platform that allows training text classification models using an iterative and fast process. We investigate which active learning methods work best in our few-shot setup. Additionally, we develop a model to predict when to stop annotating. This is relevant as in a few-shot setup we do not have access to a large validation set.
Recent development of large-scale pre-trained language models (PLM) have significantly improved the capability of models in various NLP tasks, in terms of performance after task-specific fine-tuning and zero-shot / few-shot learning. However, many of such models come with a dauntingly huge size that few institutions can afford to pre-train, fine-tune or even deploy, while moderate-sized models usually lack strong generalized few-shot learning capabilities. In this paper, we first elaborate the current obstacles of using PLM models in terms of the Impossible Triangle: 1) moderate model size, 2) state-of-the-art few-shot learning capability, and 3) state-of-the-art fine-tuning capability. We argue that all existing PLM models lack one or more properties from the Impossible Triangle. To remedy these missing properties of PLMs, various techniques have been proposed, such as knowledge distillation, data augmentation and prompt learning, which inevitably brings additional work to the application of PLMs in real scenarios. We then offer insights into future research directions of PLMs to achieve the Impossible Triangle, and break down the task into several key phases.
Recent state-of-the-art computer vision systems are trained from natural language supervision, ranging from simple object category names to descriptive captions. This free form of supervision ensures high generality and usability of the learned visual models, based on extensive heuristics on data collection to cover as many visual concepts as possible. Alternatively, learning with external knowledge about images is a promising way which leverages a much more structured source of supervision. In this paper, we propose K-LITE (Knowledge-augmented Language-Image Training and Evaluation), a simple strategy to leverage external knowledge to build transferable visual systems: In training, it enriches entities in natural language with WordNet and Wiktionary knowledge, leading to an efficient and scalable approach to learning image representations that can understand both visual concepts and their knowledge; In evaluation, the natural language is also augmented with external knowledge and then used to reference learned visual concepts (or describe new ones) to enable zero-shot and few-shot transfer of the pre-trained models. We study the performance of K-LITE on two important computer vision problems, image classification and object detection, benchmarking on 20 and 13 different existing datasets, respectively. The proposed knowledge-augmented models show significant improvement in transfer learning performance over existing methods.
Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged to any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in //github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.
Although adapting pre-trained language models with few examples has shown promising performance on text classification, there is a lack of understanding of where the performance gain comes from. In this work, we propose to answer this question by interpreting the adaptation behavior using post-hoc explanations from model predictions. By modeling feature statistics of explanations, we discover that (1) without fine-tuning, pre-trained models (e.g. BERT and RoBERTa) show strong prediction bias across labels; (2) although few-shot fine-tuning can mitigate the prediction bias and demonstrate promising prediction performance, our analysis shows models gain performance improvement by capturing non-task-related features (e.g. stop words) or shallow data patterns (e.g. lexical overlaps). These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior, which requires further sanity check on model predictions and careful design in model evaluations in few-shot fine-tuning.
Pre-trained models are widely used in the tasks of natural language processing nowadays. However, in the specific field of text simplification, the research on improving pre-trained models is still blank. In this work, we propose a continued pre-training method for text simplification. Specifically, we propose a new masked language modeling (MLM) mechanism, which does not randomly mask words but only masks simple words. The new mechanism can make the model learn to generate simple words. We use a small-scale simple text dataset for continued pre-training and employ two methods to identify simple words from the texts. We choose BERT, a representative pre-trained model, and continue pre-training it using our proposed method. Finally, we obtain SimpleBERT, which surpasses BERT in both lexical simplification and sentence simplification tasks and has achieved state-of-the-art results on multiple datasets. What's more, SimpleBERT can replace BERT in existing simplification models without modification.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.