Text-to-SQL models can generate a list of candidate SQL queries, and the best query is often in the candidate list, but not at the top of the list. An effective re-rank method can select the right SQL query from the candidate list and improve the model's performance. Previous studies on code generation automatically generate test cases and use them to re-rank candidate codes. However, automatic test case generation for text-to-SQL is an understudied field. We propose an automatic test case generation method that first generates a database and then uses LLMs to predict the ground truth, which is the expected execution results of the ground truth SQL query on this database. To reduce the difficulty for LLMs to predict, we conduct experiments to search for ways to generate easy databases for LLMs and design easy-to-understand prompts. Based on our test case generation method, we propose a re-rank method to select the right SQL query from the candidate list. Given a candidate list, our method can generate test cases and re-rank the candidate list according to their pass numbers on these test cases and their generation probabilities. The experiment results on the validation dataset of Spider show that the performance of some state-of-the-art models can get a 3.6\% improvement after applying our re-rank method.
Network-on-chips (NoCs) are currently a widely used approach for achieving scalability of multi-cores to many-cores, as well as for interconnecting other vital system-on-chip (SoC) components. Each entity in 2D mesh-based NoCs has a router responsible for forwarding packets between the dimensions as well as the entity itself, and it is essentially a 5-port switch. With respect to the routing algorithm, there are important trade-offs between routing performance and the efficiency of overcoming potential deadlocks. Common deadlock avoidance techniques including the turn model usually involve restrictions of certain paths a packet can take at the cost of a higher probability for network congestion. In contrast, deadlock resolution techniques, as well as some avoidance schemes, provide more path flexibility at the expense of hardware complexity, such as by incorporating (or assuming) dedicated buffers. This paper provides a deadlock avoidance algorithm for NoC routers based on output-queues (OQs) or virtual-output queues (VOQs), with a focus on their use on field-programmable gate-arrays (FPGAs). The proposed approach features fewer path restrictions than common techniques, and can be based on existing routing algorithms as a baseline, deadlock-free or not. This requires no modification to the queueing topology, and the required logic is minimal. Our algorithm approaches the performance of fully-adaptive algorithms, while maintaining deadlock freedom.
The recent success of ChatGPT and GPT-4 has drawn widespread attention to multimodal dialogue systems. However, there is a lack of datasets in the academic community that can effectively evaluate the multimodal generation capabilities of Visual Language Models (VLMs) in textual-visual chat tasks. In this paper, we address this gap by introducing two novel multimodal datasets: the synthetic CLEVR-ATVC dataset (620K) and the manually pictured Fruit-ATVC dataset (50K). These datasets incorporate both visual and text-based inputs and outputs. Furthermore, to facilitate the accountability of multimodal systems in rejecting human requests, similar to language-based ChatGPT conversations, we introduce specific rules as supervisory signals within the datasets. This allows the trained VLM to provide a yes or no answer after engaging in visual and textual reasoning, accompanied by a language explanation to clarify the reasons behind the inability to execute the given human instruction. Our proposed method involves a two-stage training procedure, which includes training the image auto-encoder and the auto-regressive transformer from scratch. The first stage employs a discrete variational autoencoder (dVAE) to compress each image into concise tokens, which are then combined with text tokens into a single data stream. This stream is subsequently fed into the decoder-based transformer to generate visual re-creations and textual feedback in the second stage. We conduct comprehensive analyses of experimental results, focusing on re-created image quality, answer accuracy, and the model's behavior when faced with uncertainty and imperfect user queries. Through our explorations and findings, we aim to contribute valuable insights into the accountability of textual-visual generative models.
The enhanced performance of AI has accelerated its integration into scientific research. In particular, the use of generative AI to create scientific hypotheses is promising and is increasingly being applied across various fields. However, when employing AI-generated hypotheses for critical decisions, such as medical diagnoses, verifying their reliability is crucial. In this study, we consider a medical diagnostic task using generated images by diffusion models, and propose a statistical test to quantify its reliability. The basic idea behind the proposed statistical test is to employ a selective inference framework, where we consider a statistical test conditional on the fact that the generated images are produced by a trained diffusion model. Using the proposed method, the statistical reliability of medical image diagnostic results can be quantified in the form of a p-value, allowing for decision-making with a controlled error rate. We show the theoretical validity of the proposed statistical test and its effectiveness through numerical experiments on synthetic and brain image datasets.
Sequential recommendation (SR) models based on Transformers have achieved remarkable successes. The self-attention mechanism of Transformers for computer vision and natural language processing suffers from the oversmoothing problem, i.e., hidden representations becoming similar to tokens. In the SR domain, we, for the first time, show that the same problem occurs. We present pioneering investigations that reveal the low-pass filtering nature of self-attention in the SR, which causes oversmoothing. To this end, we propose a novel method called $\textbf{B}$eyond $\textbf{S}$elf-$\textbf{A}$ttention for Sequential $\textbf{Rec}$ommendation (BSARec), which leverages the Fourier transform to i) inject an inductive bias by considering fine-grained sequential patterns and ii) integrate low and high-frequency information to mitigate oversmoothing. Our discovery shows significant advancements in the SR domain and is expected to bridge the gap for existing Transformer-based SR models. We test our proposed approach through extensive experiments on 6 benchmark datasets. The experimental results demonstrate that our model outperforms 7 baseline methods in terms of recommendation performance. Our code is available at //github.com/yehjin-shin/BSARec.
Solely relying on test passing to evaluate Large Language Models (LLMs) for code synthesis may result in unfair assessment or promoting models with data leakage. As an alternative, we introduce CodeMind, a framework designed to gauge the code reasoning abilities of LLMs. CodeMind currently supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR). The first two evaluate models to predict the execution output of an arbitrary code or code the model could correctly synthesize. The third one evaluates the extent to which LLMs implement the specified expected behavior. Our extensive evaluation of nine LLMs across five benchmarks in two different programming languages using CodeMind shows that LLMs fairly understand control flow constructs and, in general, are capable of reasoning how inputs evolve to output, specifically for simple programs and the ones they can correctly synthesize. However, their performance drops for code with higher complexity, non-trivial logical and arithmetic operators, non-primitive types, and API calls. Furthermore, we observe that, while correlated, specification reasoning (essential for code synthesis) does not imply execution reasoning (essential for broader programming tasks such as testing and debugging): ranking LLMs based on test passing can be different compared to code reasoning.
We propose a classification of all one-dimensional discrete statistical models with maximum likelihood degree one based on their rational parametrization. We show how all such models can be constructed from members of a smaller class of 'fundamental models' using a finite number of simple operations. We introduce 'chipsplitting games', a class of combinatorial games on a grid which we use to represent fundamental models. This combinatorial perspective enables us to show that there are only finitely many fundamental models in the probability simplex $\Delta_n$ for $n\leq 4$.
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models must contend with the reality that their training is curated from both clean data and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets (of real and synthetic data) on their stability. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.
Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.