Multitask Gaussian processes (MTGP) are the Gaussian process (GP) framework's solution for multioutput regression problems in which the $T$ elements of the regressors cannot be considered conditionally independent given the observations. Standard MTGP models assume that there exist both a multitask covariance matrix as a function of an intertask matrix, and a noise covariance matrix. These matrices need to be approximated by a low rank simplification of order $P$ in order to reduce the number of parameters to be learnt from $T^2$ to $TP$. Here we introduce a novel approach that simplifies the multitask learning by reducing it to a set of conditioned univariate GPs without the need for any low rank approximations, therefore completely eliminating the requirement to select an adequate value for hyperparameter $P$. At the same time, by extending this approach with both a hierarchical and an approximate model, the proposed extensions are capable of recovering the multitask covariance and noise matrices after learning only $2T$ parameters, avoiding the validation of any model hyperparameter and reducing the overall complexity of the model as well as the risk of overfitting. Experimental results over synthetic and real problems confirm the advantages of this inference approach in its ability to accurately recover the original noise and signal matrices, as well as the achieved performance improvement in comparison to other state of art MTGP approaches. We have also integrated the model with standard GP toolboxes, showing that it is computationally competitive with state of the art options.
Matrix completion refers to completing a low-rank matrix from a few observed elements of its entries and has been known as one of the significant and widely-used problems in recent years. The required number of observations for exact completion is directly proportional to rank and the coherency parameter of the matrix. In many applications, there might exist additional information about the low-rank matrix of interest. For example, in collaborative filtering, Netflix and dynamic channel estimation in communications, extra subspace information is available. More precisely in these applications, there are prior subspaces forming multiple angles with the ground-truth subspaces. In this paper, we propose a novel strategy to incorporate this information into the completion task. To this end, we designed a multi-weight nuclear norm minimization where the weights are such chosen to penalize each angle within the matrix subspace independently. We propose a new scheme for optimally choosing the weights. Specifically, we first calculate an upper-bound expression describing the coherency of the interested matrix. Then, we obtain the optimal weights by minimizing this expression. Simulation results certify the advantages of allowing multiple weights in the completion procedure. Explicitly, they indicate that our proposed multi-weight problem needs fewer observations compared to state-of-the-art methods.
Neural Processes (NPs) consider a task as a function realized from a stochastic process and flexibly adapt to unseen tasks through inference on functions. However, naive NPs can model data from only a single stochastic process and are designed to infer each task independently. Since many real-world data represent a set of correlated tasks from multiple sources (e.g., multiple attributes and multi-sensor data), it is beneficial to infer them jointly and exploit the underlying correlation to improve the predictive performance. To this end, we propose Multi-Task Processes (MTPs), an extension of NPs designed to jointly infer tasks realized from multiple stochastic processes. We build our MTPs in a hierarchical manner such that inter-task correlation is considered by conditioning all per-task latent variables on a single global latent variable. In addition, we further design our MTPs so that they can address multi-task settings with incomplete data (i.e., not all tasks share the same set of input points), which has high practical demands in various applications. Experiments demonstrate that MTPs can successfully model multiple tasks jointly by discovering and exploiting their correlations in various real-world data such as time series of weather attributes and pixel-aligned visual modalities.
We consider online sequential decision problems where an agent must balance exploration and exploitation. We derive a set of Bayesian `optimistic' policies which, in the stochastic multi-armed bandit case, includes the Thompson sampling policy. We provide a new analysis showing that any algorithm producing policies in the optimistic set enjoys $\tilde O(\sqrt{AT})$ Bayesian regret for a problem with $A$ actions after $T$ rounds. We extend the regret analysis for optimistic policies to bilinear saddle-point problems which include zero-sum matrix games and constrained bandits as special cases. In this case we show that Thompson sampling can produce policies outside of the optimistic set and suffer linear regret in some instances. Finding a policy inside the optimistic set amounts to solving a convex optimization problem and we call the resulting algorithm `variational Bayesian optimistic sampling' (VBOS). The procedure works for any posteriors, \ie, it does not require the posterior to have any special properties, such as log-concavity, unimodality, or smoothness. The variational view of the problem has many useful properties, including the ability to tune the exploration-exploitation tradeoff, add regularization, incorporate constraints, and linearly parameterize the policy.
In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors, inducing confounding and biasing estimates derived under the assumption of a perfect Markov decision process (MDP) model. Here we tackle this by considering off-policy evaluation in a partially observed MDP (POMDP). Specifically, we consider estimating the value of a given target policy in a POMDP given trajectories with only partial state observations generated by a different and unknown policy that may depend on the unobserved state. We tackle two questions: what conditions allow us to identify the target policy value from the observed data and, given identification, how to best estimate it. To answer these, we extend the framework of proximal causal inference to our POMDP setting, providing a variety of settings where identification is made possible by the existence of so-called bridge functions. We then show how to construct semiparametrically efficient estimators in these settings. We term the resulting framework proximal reinforcement learning (PRL). We demonstrate the benefits of PRL in an extensive simulation study.
In quantitative genetics, statistical modeling techniques are used to facilitate advances in the understanding of which genes underlie agronomically important traits and have enabled the use of genome-wide markers to accelerate genetic gain. The logistic regression model is a statistically optimal approach for quantitative genetics analysis of binary traits. To encourage more widespread use of the logistic model in such analyses, efforts need to be made to address separation, which occurs whenever a specific combination of predictors can perfectly predict the value of a binary trait. Data separation is especially prevalent in applications where the number of predictors is near the sample size. In this study we motivate a logistic model that is robust to separation, and we develop a novel prediction procedure for this robust model that is appropriate when separation exists. We show that this robust model offers superior inferences and comparable predictions to existing approaches while remaining true to the logistic model. This is an improvement to previously existing approaches which treats separation as a modeling shortcoming and not an antagonistic data configuration. Previous approaches, therefore, change the modeling paradigm to consider separation that, before our robust model exists, is problematic to logistic models. Our comparisons are conducted on several didactic examples and a genomics study on the kernel color in maize. The ensuing analyses reaffirm the billed superior inferences and comparable predictive performance of our robust model. Therefore, our approach provides scientists with an appropriate statistical modeling framework for analyses involving agronomically important binary traits.
Bayesian Optimization is a sample-efficient black-box optimization procedure that is typically applied to problems with a small number of independent objectives. However, in practice we often wish to optimize objectives defined over many correlated outcomes (or "tasks"). For example, scientists may want to optimize the coverage of a cell tower network across a dense grid of locations. Similarly, engineers may seek to balance the performance of a robot across dozens of different environments via constrained or robust optimization. However, the Gaussian Process (GP) models typically used as probabilistic surrogates for multi-task Bayesian Optimization scale poorly with the number of outcomes, greatly limiting applicability. We devise an efficient technique for exact multi-task GP sampling that combines exploiting Kronecker structure in the covariance matrices with Matheron's identity, allowing us to perform Bayesian Optimization using exact multi-task GP models with tens of thousands of correlated outputs. In doing so, we achieve substantial improvements in sample efficiency compared to existing approaches that only model aggregate functions of the outcomes. We demonstrate how this unlocks a new class of applications for Bayesian Optimization across a range of tasks in science and engineering, including optimizing interference patterns of an optical interferometer with more than 65,000 outputs.
We consider robust variants of the standard optimal transport, named robust optimal transport, where marginal constraints are relaxed via Kullback-Leibler divergence. We show that Sinkhorn-based algorithms can approximate the optimal cost of robust optimal transport in $\widetilde{\mathcal{O}}(\frac{n^2}{\varepsilon})$ time, in which $n$ is the number of supports of the probability distributions and $\varepsilon$ is the desired error. Furthermore, we investigate a fixed-support robust barycenter problem between $m$ discrete probability distributions with at most $n$ number of supports and develop an approximating algorithm based on iterative Bregman projections (IBP). For the specific case $m = 2$, we show that this algorithm can approximate the optimal barycenter value in $\widetilde{\mathcal{O}}(\frac{mn^2}{\varepsilon})$ time, thus being better than the previous complexity $\widetilde{\mathcal{O}}(\frac{mn^2}{\varepsilon^2})$ of the IBP algorithm for approximating the Wasserstein barycenter.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
Zero shot learning in Image Classification refers to the setting where images from some novel classes are absent in the training data but other information such as natural language descriptions or attribute vectors of the classes are available. This setting is important in the real world since one may not be able to obtain images of all the possible classes at training. While previous approaches have tried to model the relationship between the class attribute space and the image space via some kind of a transfer function in order to model the image space correspondingly to an unseen class, we take a different approach and try to generate the samples from the given attributes, using a conditional variational autoencoder, and use the generated samples for classification of the unseen classes. By extensive testing on four benchmark datasets, we show that our model outperforms the state of the art, particularly in the more realistic generalized setting, where the training classes can also appear at the test time along with the novel classes.
Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of these factors. We find that suboptimal inference is often due to amortizing inference rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.