This paper studies higher-order inference properties of nonparametric local polynomial regression methods under random sampling. We prove Edgeworth expansions for $t$ statistics and coverage error expansions for interval estimators that (i) hold uniformly in the data generating process, (ii) allow for the uniform kernel, and (iii) cover estimation of derivatives of the regression function. The terms of the higher-order expansions, and their associated rates as a function of the sample size and bandwidth sequence, depend on the smoothness of the population regression function, the smoothness exploited by the inference procedure, and on whether the evaluation point is in the interior or on the boundary of the support. We prove that robust bias corrected confidence intervals have the fastest coverage error decay rates in all cases, and we use our results to deliver novel, inference-optimal bandwidth selectors. The main methodological results are implemented in companion \textsf{R} and \textsf{Stata} software packages.
We study methods based on reproducing kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process (MRP). We study a regularized form of the kernel least-squares temporal difference (LSTD) estimate; in the population limit of infinite data, it corresponds to the fixed point of a projected Bellman operator defined by the associated reproducing kernel Hilbert space. The estimator itself is obtained by computing the projected fixed point induced by a regularized version of the empirical operator; due to the underlying kernel structure, this reduces to solving a linear system involving kernel matrices. We analyze the error of this estimate in the $L^2(\mu)$-norm, where $\mu$ denotes the stationary distribution of the underlying Markov chain. Our analysis imposes no assumptions on the transition operator of the Markov chain, but rather only conditions on the reward function and population-level kernel LSTD solutions. We use empirical process theory techniques to derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator, as well as the instance-dependent variance of the Bellman residual error. In addition, we prove minimax lower bounds over sub-classes of MRPs, which shows that our rate is optimal in terms of the sample size $n$ and the effective horizon $H = (1 - \gamma)^{-1}$. Whereas existing worst-case theory predicts cubic scaling ($H^3$) in the effective horizon, our theory reveals that there is in fact a much wider range of scalings, depending on the kernel, the stationary distribution, and the variance of the Bellman residual error. Notably, it is only parametric and near-parametric problems that can ever achieve the worst-case cubic scaling.
We consider the problem of inference for nonlinear, multivariate diffusion processes, satisfying It\^o stochastic differential equations (SDEs), using data at discrete times that may be incomplete and subject to measurement error. Our starting point is a state-of-the-art correlated pseudo-marginal Metropolis-Hastings algorithm, that uses correlated particle filters to induce strong and positive correlation between successive likelihood estimates. However, unless the measurement error or the dimension of the SDE is small, correlation can be eroded by the resampling steps in the particle filter. We therefore propose a novel augmentation scheme, that allows for conditioning on values of the latent process at the observation times, completely avoiding the need for resampling steps. We integrate over the uncertainty at the observation times with an additional Gibbs step. Connections between the resulting pseudo-marginal scheme and existing inference schemes for diffusion processes are made, giving a unified inference framework that encompasses Gibbs sampling and pseudo marginal schemes. The methodology is applied in three examples of increasing complexity. We find that our approach offers substantial increases in overall efficiency, compared to competing methods.
Modern high-dimensional point process data, especially those from neuroscience experiments, often involve observations from multiple conditions and/or experiments. Networks of interactions corresponding to these conditions are expected to share many edges, but also exhibit unique, condition-specific ones. However, the degree of similarity among the networks from different conditions is generally unknown. Existing approaches for multivariate point processes do not take these structures into account and do not provide inference for jointly estimated networks. To address these needs, we propose a joint estimation procedure for networks of high-dimensional point processes that incorporates easy-to-compute weights in order to data-adaptively encourage similarity between the estimated networks. We also propose a powerful hierarchical multiple testing procedure for edges of all estimated networks, which takes into account the data-driven similarity structure of the multi-experiment networks. Compared to conventional multiple testing procedures, our proposed procedure greatly reduces the number of tests and results in improved power, while tightly controlling the family-wise error rate. Unlike existing procedures, our method is also free of assumptions on dependency between tests, offers flexibility on p-values calculated along the hierarchy, and is robust to misspecification of the hierarchical structure. We verify our theoretical results via simulation studies and demonstrate the application of the proposed procedure using neuronal spike train data.
In this paper, we consider the multi-armed bandit problem with high-dimensional features. First, we prove a minimax lower bound, $\mathcal{O}\big((\log d)^{\frac{\alpha+1}{2}}T^{\frac{1-\alpha}{2}}+\log T\big)$, for the cumulative regret, in terms of horizon $T$, dimension $d$ and a margin parameter $\alpha\in[0,1]$, which controls the separation between the optimal and the sub-optimal arms. This new lower bound unifies existing regret bound results that have different dependencies on T due to the use of different values of margin parameter $\alpha$ explicitly implied by their assumptions. Second, we propose a simple and computationally efficient algorithm inspired by the general Upper Confidence Bound (UCB) strategy that achieves a regret upper bound matching the lower bound. The proposed algorithm uses a properly centered $\ell_1$-ball as the confidence set in contrast to the commonly used ellipsoid confidence set. In addition, the algorithm does not require any forced sampling step and is thereby adaptive to the practically unknown margin parameter. Simulations and a real data analysis are conducted to compare the proposed method with existing ones in the literature.
We explore the connection between outlier-robust high-dimensional statistics and non-convex optimization in the presence of sparsity constraints, with a focus on the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We develop novel and simple optimization formulations for these problems such that any approximate stationary point of the associated optimization problem yields a near-optimal solution for the underlying robust estimation task. As a corollary, we obtain that any first-order method that efficiently converges to stationarity yields an efficient algorithm for these tasks. The obtained algorithms are simple, practical, and succeed under broader distributional assumptions compared to prior work.
A recently proposed SLOPE estimator (arXiv:1407.3824) has been shown to adaptively achieve the minimax $\ell_2$ estimation rate under high-dimensional sparse linear regression models (arXiv:1503.08393). Such minimax optimality holds in the regime where the sparsity level $k$, sample size $n$, and dimension $p$ satisfy $k/p \rightarrow 0$, $k\log p/n \rightarrow 0$. In this paper, we characterize the estimation error of SLOPE under the complementary regime where both $k$ and $n$ scale linearly with $p$, and provide new insights into the performance of SLOPE estimators. We first derive a concentration inequality for the finite sample mean square error (MSE) of SLOPE. The quantity that MSE concentrates around takes a complicated and implicit form. With delicate analysis of the quantity, we prove that among all SLOPE estimators, LASSO is optimal for estimating $k$-sparse parameter vectors that do not have tied non-zero components in the low noise scenario. On the other hand, in the large noise scenario, the family of SLOPE estimators are sub-optimal compared with bridge regression such as the Ridge estimator.
Differential Granger causality, that is understanding how Granger causal relations differ between two related time series, is of interest in many scientific applications. Modeling each time series by a vector autoregressive (VAR) model, we propose a new method to directly learn the difference between the corresponding transition matrices in high dimensions. Key to the new method is an estimating equation constructed based on the Yule-Walker equation that links the difference in transition matrices to the difference in the corresponding precision matrices. In contrast to separately estimating each transition matrix and then calculating the difference, the proposed direct estimation method only requires sparsity of the difference of the two VAR models, and hence allows hub nodes in each high-dimensional time series. The direct estimator is shown to be consistent in estimation and support recovery under mild assumptions. These results also lead to novel consistency results with potentially faster convergence rates for estimating differences between precision matrices of i.i.d observations under weaker assumptions than existing results. We evaluate the finite sample performance of the proposed method using simulation studies and an application to electroencephalogram (EEG) data.
We study theoretically, for the first time, the Dirichlet kernel estimator introduced by Aitchison and Lauder (1985) for the estimation of multivariate densities supported on the $d$-dimensional simplex. The simplex is an important case as it is the natural domain of compositional data and has been neglected in the literature on asymmetric kernels. The Dirichlet kernel estimator, which generalizes the (non-modified) unidimensional Beta kernel estimator from Chen (1999), is free of boundary bias and non-negative everywhere on the simplex. We show that it achieves the optimal convergence rate $O(n^{-4/(d+4)})$ for the mean squared error and the mean integrated squared error, we prove its asymptotic normality and uniform strong consistency, and we also find an asymptotic expression for the mean integrated absolute error. To illustrate the Dirichlet kernel method and its favorable boundary properties, we present a case study on minerals processing.
We study the theoretical properties of a variational Bayes method in the Gaussian Process regression model. We consider the inducing variables method introduced by Titsias (2009a) and derive sufficient conditions for obtaining contraction rates for the corresponding variational Bayes (VB) posterior. As examples we show that for three particular covariance kernels (Mat\'ern, squared exponential, random series prior) the VB approach can achieve optimal, minimax contraction rates for a sufficiently large number of appropriately chosen inducing variables. The theoretical findings are demonstrated by numerical experiments.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.