亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate estimation of the cascaded channel from a user equipment (UE) to a base station (BS) via each reconfigurable intelligent surface (RIS) element is critical to realizing the full potential of the RIS's ability to control the overall channel. The number of parameters to be estimated is equal to the number of RIS elements, requiring an equal number of pilots unless an underlying structure can be identified. In this paper, we show how the spatial correlation inherent in the different RIS channels provides this desired structure. We first optimize the RIS phase-shift pattern using a much-reduced pilot length (determined by the rank of the spatial correlation matrices) to minimize the mean square error (MSE) in the channel estimation under electromagnetic interference. In addition to considering the linear minimum MSE (LMMSE) channel estimator, we propose a novel channel estimator that requires only knowledge of the array geometry while not requiring any user-specific statistical information. We call this the reduced-subspace least squares (RS-LS) estimator and optimize the RIS phase-shift pattern for it. This novel estimator significantly outperforms the conventional LS estimator. For both the LMMSE and RS-LS estimators, the proposed optimized RIS configurations result in significant channel estimation improvements over the benchmarks.

相關內容

High-quality benchmarks are the foundation for embodied AI research, enabling significant advancements in long-horizon navigation, manipulation and rearrangement tasks. However, as frontier tasks in robotics get more advanced, they require faster simulation speed, more intricate test environments, and larger demonstration datasets. To this end, we present MS-HAB, a holistic benchmark for low-level manipulation and in-home object rearrangement. First, we provide a GPU-accelerated implementation of the Home Assistant Benchmark (HAB). We support realistic low-level control and achieve over 3x the speed of previous magical grasp implementations at similar GPU memory usage. Second, we train extensive reinforcement learning (RL) and imitation learning (IL) baselines for future work to compare against. Finally, we develop a rule-based trajectory filtering system to sample specific demonstrations from our RL policies which match predefined criteria for robot behavior and safety. Combining demonstration filtering with our fast environments enables efficient, controlled data generation at scale.

Social media platforms have become the hubs for various user interactions covering a wide range of needs, including technical support and services related to brands, products, or user accounts. Unfortunately, there has been a recent surge in scammers impersonating official services and providing fake technical support to users through these platforms. In this study, we focus on scammers engaging in such fake technical support to target users who are having problems recovering their accounts. More specifically, we focus on users encountering access problems with social media profiles (e.g., on platforms such as Facebook, Instagram, Gmail, and X) and cryptocurrency wallets. The main contribution of our work is the development of an automated system that interacts with scammers via a chatbot that mimics different personas. By initiating decoy interactions (e.g., through deceptive tweets), we have enticed scammers to interact with our system so that we can analyze their modus operandi. Our results show that scammers employ many social media profiles asking users to contact them via a few communication channels. Using a large language model (LLM), our chatbot had conversations with 450 scammers and provided valuable insights into their tactics and, most importantly, their payment profiles. This automated approach highlights how scammers use a variety of strategies, including role-playing, to trick victims into disclosing personal or financial information. With this study, we lay the foundation for using automated chat-based interactions with scammers to detect and study fraudulent activities at scale in an automated way.

Suggested questions (SQs) provide an effective initial interface for users to engage with their documents in AI-powered reading applications. In practical reading sessions, users have diverse backgrounds and reading goals, yet current SQ features typically ignore such user information, resulting in homogeneous or ineffective questions. We introduce a pipeline that generates personalized SQs by incorporating reader profiles (professions and reading goals) and demonstrate its utility in two ways: 1) as an improved SQ generation pipeline that produces higher quality and more diverse questions compared to current baselines, and 2) as a data generator to fine-tune extremely small models that perform competitively with much larger models on SQ generation. Our approach can not only serve as a drop-in replacement in current SQ systems to immediately improve their performance but also help develop on-device SQ models that can run locally to deliver fast and private SQ experience.

Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, particularly in task generalization for both text and vision data. While fine-tuning these models can significantly enhance their performance on specific downstream tasks, it often requires high-quality data that cannot be shared due to privacy concerns. Federated Learning (FL) offers a promising solution for collaborative training without direct data sharing. However, many parameter-efficient fine-tuning strategies for LLMs in FL, particularly those based on Low-Rank Adaptation (LoRA), face limitations. In this paper, we critically analyze the convergence and performance guarantees of popular FL frameworks utilizing LoRA, highlighting its suboptimal nature due to constrained subspace learning of low-rank matrices. This limitation hinders effective fine-tuning of LLMs in federated settings. Through rigorous analytical and empirical evaluations, we demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models. Our comprehensive comparison unmasks inefficiencies in LoRA approaches and underscores the advantages of direct weight aggregation. We extend our analysis to low-rank gradient-based optimizers, such as GaLore, used during local training steps. Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities. While privacy remains paramount in FL discourse, our focus is on assessing performance outcomes of federated fine-tuned models and evaluating various FL frameworks from both theoretical and empirical perspectives. Our findings advocate reassessing the reliance on LoRA within FL contexts, paving the way for more efficient training methodologies.

This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks. In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model. We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate. Moreover, we theoretically prove the convergence of the proposed heterogeneous MARL method when using the linear value function approximation. Our method maximizes the network throughput and ensures fairness among stations, therefore, enhancing the overall network performance. Simulation results demonstrate that the proposed QPMIX algorithm improves throughput, mean delay, delay jitter, and collision rates compared with conventional carrier-sense multiple access with collision avoidance in the saturated traffic scenario. Furthermore, the QPMIX is shown to be robust in unsaturated and delay-sensitive traffic scenarios, and promotes cooperation among heterogeneous agents.

Large language models (LLMs), endowed with exceptional reasoning capabilities, are adept at discerning profound user interests from historical behaviors, thereby presenting a promising avenue for the advancement of recommendation systems. However, a notable discrepancy persists between the sparse collaborative semantics typically found in recommendation systems and the dense token representations within LLMs. In our study, we propose a novel framework that harmoniously merges traditional recommendation models with the prowess of LLMs. We initiate this integration by transforming ItemIDs into sequences that align semantically with the LLMs space, through the proposed Alignment Tokenization module. Additionally, we design a series of specialized supervised learning tasks aimed at aligning collaborative signals with the subtleties of natural language semantics. To ensure practical applicability, we optimize online inference by pre-caching the top-K results for each user, reducing latency and improving effciency. Extensive experimental evidence indicates that our model markedly improves recall metrics and displays remarkable scalability of recommendation systems.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司