亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Various metrics and interventions have been developed to identify and mitigate unfair outputs of machine learning systems. While individuals and organizations have an obligation to avoid discrimination, the use of fairness-aware machine learning interventions has also been described as amounting to 'algorithmic positive action' under European Union (EU) non-discrimination law. As the Court of Justice of the European Union has been strict when it comes to assessing the lawfulness of positive action, this would impose a significant legal burden on those wishing to implement fair-ml interventions. In this paper, we propose that algorithmic fairness interventions often should be interpreted as a means to prevent discrimination, rather than a measure of positive action. Specifically, we suggest that this category mistake can often be attributed to neutrality fallacies: faulty assumptions regarding the neutrality of fairness-aware algorithmic decision-making. Our findings raise the question of whether a negative obligation to refrain from discrimination is sufficient in the context of algorithmic decision-making. Consequently, we suggest moving away from a duty to 'not do harm' towards a positive obligation to actively 'do no harm' as a more adequate framework for algorithmic decision-making and fair ml-interventions.

相關內容

Knowledge hypergraph embedding models are usually computationally expensive due to the inherent complex semantic information. However, existing works mainly focus on improving the effectiveness of knowledge hypergraph embedding, making the model architecture more complex and redundant. It is desirable and challenging for knowledge hypergraph embedding to reach a trade-off between model effectiveness and efficiency. In this paper, we propose an end-to-end efficient n-ary knowledge hypergraph embedding model, HyCubE, which designs a novel 3D circular convolutional neural network and the alternate mask stack strategy to enhance the interaction and extraction of feature information comprehensively. Furthermore, our proposed model achieves a better trade-off between effectiveness and efficiency by adaptively adjusting the 3D circular convolutional layer structure to handle different arity knowledge hypergraphs with fewer parameters. In addition, we use 1-N multilinear scoring based on the entity mask mechanism to further accelerate the model training efficiency. Finally, extensive experimental results on all datasets demonstrate that our proposed model consistently outperforms state-of-the-art baselines, with an average improvement of 7.30%-9.53% and a maximum improvement of 33.82% across all metrics. Meanwhile, HyCubE is 4.12x faster, GPU memory usage is 52.19% lower, and the number of parameters is reduced by 85.21% compared with the average metric of the latest state-of-the-art baselines.

In an era of rapidly advancing data-driven applications, there is a growing demand for data in both research and practice. Synthetic data have emerged as an alternative when no real data is available (e.g., due to privacy regulations). Synthesizing tabular data presents unique and complex challenges, especially handling (i) missing values, (ii) dataset imbalance, (iii) diverse column types, and (iv) complex data distributions, as well as preserving (i) column correlations, (ii) temporal dependencies, and (iii) integrity constraints (e.g., functional dependencies) present in the original dataset. While substantial progress has been made recently in the context of generational models, there is no one-size-fits-all solution for tabular data today, and choosing the right tool for a given task is therefore no trivial task. In this paper, we survey the state of the art in Tabular Data Synthesis (TDS), examine the needs of users by defining a set of functional and non-functional requirements, and compile the challenges associated with meeting those needs. In addition, we evaluate the reported performance of 36 popular research TDS tools about these requirements and develop a decision guide to help users find suitable TDS tools for their applications. The resulting decision guide also identifies significant research gaps.

Cross-device training is a crucial subfield of federated learning, where the number of clients can reach into the billions. Standard approaches and local methods are prone to issues such as client drift and insensitivity to data similarities. We propose a novel algorithm (SPAM) for cross-device federated learning with non-convex losses, which solves both issues. We provide sharp analysis under second-order (Hessian) similarity, a condition satisfied by a variety of machine learning problems in practice. Additionally, we extend our results to the partial participation setting, where a cohort of selected clients communicate with the server at each communication round. Our method is the first in its kind, that does not require the smoothness of the objective and provably benefits from clients having similar data.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司