亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In covariate-adaptive or response-adaptive randomization, the treatment assignment and outcome can be correlated. Under this situation, re-randomization tests are a straightforward and attractive method to provide valid statistical inference. In this paper, we investigate the number of repetitions in the re-randomization tests. This is motivated by the group sequential design in clinical trials, where the nominal significance bound can be very small at an interim analysis. Accordingly, re-randomization tests lead to a very large number of required repetitions, which may be computationally intractable. To reduce the number of repetitions, we propose an adaptive procedure and compare it with multiple approaches under pre-defined criteria. Monte Carlo simulations are conducted to show the performance of different approaches in a limited sample size. We also suggest strategies to reduce total computation time and provide practical guidance in preparing, executing and reporting before and after data are unblinded at an interim analysis, so one can complete the computation within a reasonable time frame.

相關內容

In recommender system or crowdsourcing applications of online learning, a human's preferences or abilities are often a function of the algorithm's recent actions. Motivated by this, a significant line of work has formalized settings where an action's loss is a function of the number of times that action was recently played in the prior $m$ timesteps, where $m$ corresponds to a bound on human memory capacity. To more faithfully capture decay of human memory with time, we introduce the Weighted Tallying Bandit (WTB), which generalizes this setting by requiring that an action's loss is a function of a \emph{weighted} summation of the number of times that arm was played in the last $m$ timesteps. This WTB setting is intractable without further assumption. So we study it under Repeated Exposure Optimality (REO), a condition motivated by the literature on human physiology, which requires the existence of an action that when repetitively played will eventually yield smaller loss than any other sequence of actions. We study the minimization of the complete policy regret (CPR), which is the strongest notion of regret, in WTB under REO. Since $m$ is typically unknown, we assume we only have access to an upper bound $M$ on $m$. We show that for problems with $K$ actions and horizon $T$, a simple modification of the successive elimination algorithm has $O \left( \sqrt{KT} + (m+M)K \right)$ CPR. Interestingly, upto an additive (in lieu of mutliplicative) factor in $(m+M)K$, this recovers the classical guarantee for the simpler stochastic multi-armed bandit with traditional regret. We additionally show that in our setting, any algorithm will suffer additive CPR of $\Omega \left( mK + M \right)$, demonstrating our result is nearly optimal. Our algorithm is computationally efficient, and we experimentally demonstrate its practicality and superiority over natural baselines.

Entanglement represents ``\textit{the}'' key resource for several applications of quantum information processing, ranging from quantum communications to distributed quantum computing. Despite its fundamental importance, deterministic generation of maximally entangled qubits represents an on-going open problem. Here, we design a novel generation scheme exhibiting two attractive features, namely, i) deterministically generating different classes -- namely, GHZ-like, W-like and graph states -- of genuinely multipartite entangled states, ii) without requiring any direct interaction between the qubits. Indeed, the only necessary condition is the possibility of coherently controlling -- according to the indefinite causal order framework -- the causal order among the unitaries acting on the qubits. Through the paper, we analyze and derive the conditions on the unitaries for deterministic generation, and we provide examples for unitaries practical implementation. We conclude the paper by discussing the scalability of the proposed scheme to higher dimensional genuine multipartite entanglement (GME) states and by introducing some possible applications of the proposal for quantum networks.

Interference is a ubiquitous problem in experiments conducted on two-sided content marketplaces, such as Douyin (China's analog of TikTok). In many cases, creators are the natural unit of experimentation, but creators interfere with each other through competition for viewers' limited time and attention. "Naive" estimators currently used in practice simply ignore the interference, but in doing so incur bias on the order of the treatment effect. We formalize the problem of inference in such experiments as one of policy evaluation. Off-policy estimators, while unbiased, are impractically high variance. We introduce a novel Monte-Carlo estimator, based on "Differences-in-Qs" (DQ) techniques, which achieves bias that is second-order in the treatment effect, while remaining sample-efficient to estimate. On the theoretical side, our contribution is to develop a generalized theory of Taylor expansions for policy evaluation, which extends DQ theory to all major MDP formulations. On the practical side, we implement our estimator on Douyin's experimentation platform, and in the process develop DQ into a truly "plug-and-play" estimator for interference in real-world settings: one which provides robust, low-bias, low-variance treatment effect estimates; admits computationally cheap, asymptotically exact uncertainty quantification; and reduces MSE by 99\% compared to the best existing alternatives in our applications.

Courcelle's theorem and its adaptations to cliquewidth have shaped the field of exact parameterized algorithms and are widely considered the archetype of algorithmic meta-theorems. In the past decade, there has been growing interest in developing parameterized approximation algorithms for problems which are not captured by Courcelle's theorem and, in particular, are considered not fixed-parameter tractable under the associated widths. We develop a generalization of Courcelle's theorem that yields efficient approximation schemes for any problem that can be captured by an expanded logic we call Blocked CMSO, capable of making logical statements about the sizes of set variables via so-called weight comparisons. The logic controls weight comparisons via the quantifier-alternation depth of the involved variables, allowing full comparisons for zero-alternation variables and limited comparisons for one-alternation variables. We show that the developed framework threads the very needle of tractability: on one hand it can describe a broad range of approximable problems, while on the other hand we show that the restrictions of our logic cannot be relaxed under well-established complexity assumptions. The running time of our approximation scheme is polynomial in $1/\varepsilon$, allowing us to fully interpolate between faster approximate algorithms and slower exact algorithms. This provides a unified framework to explain the tractability landscape of graph problems parameterized by treewidth and cliquewidth, as well as classical non-graph problems such as Subset Sum and Knapsack.

A framework consists of an undirected graph $G$ and a matroid $M$ whose elements correspond to the vertices of $G$. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed parameterized algorithms for computing paths of rank $k$ in frameworks. More precisely, for vertices $s$ and $t$ of $G$, and an integer $k$, they gave FPT algorithms parameterized by $k$ deciding whether there is an $(s,t)$-path in $G$ whose vertex set contains a subset of elements of $M$ of rank $k$. These algorithms are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and therefore the existence of a deterministic FPT algorithm for this problem remains open. We present the first deterministic FPT algorithm that solves the problem in frameworks whose underlying graph $G$ is planar. While the running time of our algorithm is worse than the running times of the recent randomized algorithms, our algorithm works on more general classes of matroids. In particular, this is the first FPT algorithm for the case when matroid $M$ is represented over rationals. Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us to employ the toolbox of representative sets to design a dynamic programming procedure solving the problem efficiently on instances of bounded treewidth.

Big-data applications often involve a vast number of observations and features, creating new challenges for variable selection and parameter estimation. This paper presents a novel technique called ``slow kill,'' which utilizes nonconvex constrained optimization, adaptive $\ell_2$-shrinkage, and increasing learning rates. The fact that the problem size can decrease during the slow kill iterations makes it particularly effective for large-scale variable screening. The interaction between statistics and optimization provides valuable insights into controlling quantiles, stepsize, and shrinkage parameters in order to relax the regularity conditions required to achieve the desired level of statistical accuracy. Experimental results on real and synthetic data show that slow kill outperforms state-of-the-art algorithms in various situations while being computationally efficient for large-scale data.

Pre-trained language models (LMs) are used for knowledge intensive tasks like question answering, but their knowledge gets continuously outdated as the world changes. Prior work has studied targeted updates to LMs, injecting individual facts and evaluating whether the model learns these facts while not changing predictions on other contexts. We take a step forward and study LMs' abilities to make inferences based on injected facts (or propagate those facts): for example, after learning that something is a TV show, does an LM predict that you can watch it? We study this with two cloze-style tasks: an existing dataset of real-world sentences about novel entities (ECBD) as well as a new controlled benchmark with manually designed templates requiring varying levels of inference about injected knowledge. Surprisingly, we find that existing methods for updating knowledge (gradient-based fine-tuning and modifications of this approach) show little propagation of injected knowledge. These methods improve performance on cloze instances only when there is lexical overlap between injected facts and target inferences. Yet, prepending entity definitions in an LM's context improves performance across all settings, suggesting that there is substantial headroom for parameter-updating approaches for knowledge injection.

Companies offering web services routinely run randomized online experiments to estimate the causal impact associated with the adoption of new features and policies on key performance metrics of interest. These experiments are used to estimate a variety of effects: the increase in click rate due to the repositioning of a banner, the impact on subscription rate as a consequence of a discount or special offer, etc. In these settings, even effects whose sizes are very small can have large downstream impacts. The simple difference in means estimator (Splawa-Neyman et al., 1990) is still the standard estimator of choice for many online A/B testing platforms due to its simplicity. This method, however, can fail to detect small effects, even when the experiment contains thousands or millions of observational units. As a by-product of these experiments, however, large amounts of additional data (covariates) are collected. In this paper, we discuss benefits, costs and risks of allowing experimenters to leverage more complicated estimators that make use of covariates when estimating causal effects of interest. We adapt a recently proposed general-purpose algorithm for the estimation of causal effects with covariates to the setting of online A/B tests. Through this paradigm, we implement several covariate-adjusted causal estimators. We thoroughly evaluate their performance at scale, highlighting benefits and shortcomings of different methods. We show on real experiments how "covariate-adjusted" estimators can (i) lead to more precise quantification of the causal effects of interest and (ii) fix issues related to imbalance across treatment arms - a practical concern often overlooked in the literature. In turn, (iii) these more precise estimates can reduce experimentation time, cutting cost and helping to streamline decision-making processes, allowing for faster adoption of beneficial interventions.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.

北京阿比特科技有限公司