Clustering is an important task in many areas of knowledge: medicine and epidemiology, genomics, environmental science, economics, visual sciences, among others. Methodologies to perform inference on the number of clusters have often been proved to be inconsistent, and introducing a dependence structure among the clusters implies additional difficulties in the estimation process. In a Bayesian setting, clustering is performed by considering the unknown partition as a random object and define a prior distribution on it. This prior distribution may be induced by models on the observations, or directly defined for the partition. Several recent results, however, have shown the difficulties in consistently estimating the number of clusters, and, therefore, the partition. The problem itself of summarising the posterior distribution on the partition remains open, given the large dimension of the partition space. This work aims at reviewing the Bayesian approaches available in the literature to perform clustering, presenting advantages and disadvantages of each of them in order to suggest future lines of research.
Current physics-informed (standard or operator) neural networks still rely on accurately learning the initial conditions of the system they are solving. In contrast, standard numerical methods evolve such initial conditions without needing to learn these. In this study, we propose to improve current physics-informed deep learning strategies such that initial conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a DeepONet is applied multiple times to time step a solution, the resulting function is continuous.
Telemanipulation has become a promising technology that combines human intelligence with robotic capabilities to perform tasks remotely. However, it faces several challenges such as insufficient transparency, low immersion, and limited feedback to the human operator. Moreover, the high cost of haptic interfaces is a major limitation for the application of telemanipulation in various fields, including elder care, where our research is focused. To address these challenges, this paper proposes the usage of nonlinear model predictive control for telemanipulation using low-cost virtual reality controllers, including multiple control goals in the objective function. The framework utilizes models for human input prediction and taskrelated models of the robot and the environment. The proposed framework is validated on an UR5e robot arm in the scenario of handling liquid without spilling. Further extensions of the framework such as pouring assistance and collision avoidance can easily be included.
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.
The autologistic actor attribute model, or ALAAM, is the social influence counterpart of the better-known exponential-family random graph model (ERGM) for social selection. Extensive experience with ERGMs has shown that the problem of near-degeneracy which often occurs with simple models can be overcome by using "geometrically weighted" or "alternating" statistics. In the much more limited empirical applications of ALAAMs to date, the problem of near-degeneracy, although theoretically expected, appears to have been less of an issue. In this work I present a comprehensive survey of ALAAM applications, showing that this model has to date only been used with relatively small networks, in which near-degeneracy does not appear to be a problem. I show near-degeneracy does occur in simple ALAAM models of larger empirical networks, define some geometrically weighted ALAAM statistics analogous to those for ERGM, and demonstrate that models with these statistics do not suffer from near-degeneracy and hence can be estimated where they could not be with the simple statistics.
One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian designs. However, in many applications, such as magnetic resonance imaging (MRI), the measurement process possesses a certain structure due to the nature of the problem. The measurement operator in MRI can be described by a subsampled Fourier matrix. The purpose of this work is to extend the uncertainty quantification process using the desparsified LASSO to design matrices originating from a bounded orthonormal system, which naturally generalizes the subsampled Fourier case and also allows for the treatment of the case where the sparsity basis is not the standard basis. In particular we construct honest confidence intervals for every pixel of an MR image that is sparse in the standard basis provided the number of measurements satisfies $n \gtrsim\max\{ s\log^2 s\log p, s \log^2 p \}$ or that is sparse with respect to the Haar Wavelet basis provided a slightly larger number of measurements.
This research focuses on the estimation of a non-parametric regression function designed for data with simultaneous time and space dependencies. In such a context, we study the Trend Filtering, a nonparametric estimator introduced by \cite{mammen1997locally} and \cite{rudin1992nonlinear}. For univariate settings, the signals we consider are assumed to have a kth weak derivative with bounded total variation, allowing for a general degree of smoothness. In the multivariate scenario, we study a $K$-Nearest Neighbor fused lasso estimator as in \cite{padilla2018adaptive}, employing an ADMM algorithm, suitable for signals with bounded variation that adhere to a piecewise Lipschitz continuity criterion. By aligning with lower bounds, the minimax optimality of our estimators is validated. A unique phase transition phenomenon, previously uncharted in Trend Filtering studies, emerges through our analysis. Both Simulation studies and real data applications underscore the superior performance of our method when compared with established techniques in the existing literature.
Autonomous inspection tasks necessitate effective path-planning mechanisms to efficiently gather observations from points of interest (POI). However, localization errors commonly encountered in urban environments can introduce execution uncertainty, posing challenges to the successful completion of such tasks. To tackle these challenges, we present IRIS-under uncertainty (IRIS-U^2), an extension of the incremental random inspection-roadmap search (IRIS) algorithm, that addresses the offline planning problem via an A*-based approach, where the planning process occurs prior the online execution. The key insight behind IRIS-U^2 is transforming the computed localization uncertainty, obtained through Monte Carlo (MC) sampling, into a POI probability. IRIS-U^2 offers insights into the expected performance of the execution task by providing confidence intervals (CI) for the expected coverage, expected path length, and collision probability, which becomes progressively tighter as the number of MC samples increase. The efficacy of IRIS-U^2 is demonstrated through a case study focusing on structural inspections of bridges. Our approach exhibits improved expected coverage, reduced collision probability, and yields increasingly-precise CIs as the number of MC samples grows. Furthermore, we emphasize the potential advantages of computing bounded sub-optimal solutions to reduce computation time while still maintaining the same CI boundaries.
Confounder selection, namely choosing a set of covariates to control for confounding between a treatment and an outcome, is arguably the most important step in the design of observational studies. Previous methods, such as Pearl's celebrated back-door criterion, typically require pre-specifying a causal graph, which can often be difficult in practice. We propose an interactive procedure for confounder selection that does not require pre-specifying the graph or the set of observed variables. This procedure iteratively expands the causal graph by finding what we call "primary adjustment sets" for a pair of possibly confounded variables. This can be viewed as inverting a sequence of latent projections of the underlying causal graph. Structural information in the form of primary adjustment sets is elicited from the user, bit by bit, until either a set of covariates are found to control for confounding or it can be determined that no such set exists. We show that if the user correctly specifies the primary adjustment sets in every step, our procedure is both sound and complete.
The modeling and simulation of high-dimensional multiscale systems is a critical challenge across all areas of science and engineering. It is broadly believed that even with today's computer advances resolving all spatiotemporal scales described by the governing equations remains a remote target. This realization has prompted intense efforts to develop model order reduction techniques. In recent years, techniques based on deep recurrent neural networks have produced promising results for the modeling and simulation of complex spatiotemporal systems and offer large flexibility in model development as they can incorporate experimental and computational data. However, neural networks lack interpretability, which limits their utility and generalizability across complex systems. Here we propose a novel framework of Interpretable Learning Effective Dynamics (iLED) that offers comparable accuracy to state-of-the-art recurrent neural network-based approaches while providing the added benefit of interpretability. The iLED framework is motivated by Mori-Zwanzig and Koopman operator theory, which justifies the choice of the specific architecture. We demonstrate the effectiveness of the proposed framework in simulations of three benchmark multiscale systems. Our results show that the iLED framework can generate accurate predictions and obtain interpretable dynamics, making it a promising approach for solving high-dimensional multiscale systems.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.