亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In distributed training, communication often emerges as a bottleneck. In response, we introduce Kimad, a solution that offers adaptive gradient compression. By consistently monitoring bandwidth, Kimad refines compression ratios to match specific neural network layer requirements. Our exhaustive tests and proofs confirm Kimad's outstanding performance, establishing it as a benchmark in adaptive compression for distributed deep learning.

相關內容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:計算機性能建模、測量和評估國(guo)際研討會。 Publisher:ACM。 SIT:

Decision Transformer (DT), which employs expressive sequence modeling techniques to perform action generation, has emerged as a promising approach to offline policy optimization. However, DT generates actions conditioned on a desired future return, which is known to bear some weaknesses such as the susceptibility to environmental stochasticity. To overcome DT's weaknesses, we propose to empower DT with dynamic programming. Our method comprises three steps. First, we employ in-sample value iteration to obtain approximated value functions, which involves dynamic programming over the MDP structure. Second, we evaluate action quality in context with estimated advantages. We introduce two types of advantage estimators, IAE and GAE, which are suitable for different tasks. Third, we train an Advantage-Conditioned Transformer (ACT) to generate actions conditioned on the estimated advantages. Finally, during testing, ACT generates actions conditioned on a desired advantage. Our evaluation results validate that, by leveraging the power of dynamic programming, ACT demonstrates effective trajectory stitching and robust action generation in spite of the environmental stochasticity, outperforming baseline methods across various benchmarks. Additionally, we conduct an in-depth analysis of ACT's various design choices through ablation studies. Our code is available at //github.com/LAMDA-RL/ACT.

Large Language Models (LLMs) perform well on basic programming problems. However, they encounter challenges when dealing with complex tasks involving the use of diverse algorithmic and data structure skills, particularly programming competition-level problems. Notably, ChatGPT exhibits proficient performance on problems it has encountered during its pre-training phase, but this performance deteriorates when faced with novel problems. Consequently, enhancing the ability of LLMs to address unfamiliar problems has emerged as a pivotal research focus. The problem-solving process of LLMs mirrors human programmers' approach to a certain extent. When confronted with new programming tasks, human programmers engage in task planning and code writing with the previously acquired knowledge about algorithms and data structures. Despite having learned such knowledge, LLMs struggle to effectively apply it when faced with specific new problems. To address this issue, we constructed a novel dataset, CodeF, which contains a portion of programming problems that ChatGPT has not previously encountered. Furthermore, we developed a Knowledge Library tailored for Python programming contest problems and introduced the concept of Knowledge-Aware Code Generation (KareCoder). KareCoder bolsters the models' understanding and problem-solving capabilities by integrating prompt and knowledge from the library into the LLMs' code generation reasoning process, especially on Pass@1 metrics. Upon testing on the CodeF and APPS datasets, KareCoder demonstrated outstanding performance in handling novel problems previously unencountered by LLMs. In contrast with the code directly generated by ChatGPT, KareCoder achieved a relative improvement of 23.3% on the Pass@1 metric on the CodeF post2021-9 dataset. Additionally, it performs well compared to other methods when dealing with problems that LLMs have previously encountered.

It is well acknowledged that incorporating explicit knowledge graphs (KGs) can benefit question answering. Existing approaches typically follow a grounding-reasoning pipeline in which entity nodes are first grounded for the query (question and candidate answers), and then a reasoning module reasons over the matched multi-hop subgraph for answer prediction. Although the pipeline largely alleviates the issue of extracting essential information from giant KGs, efficiency is still an open challenge when scaling up hops in grounding the subgraphs. In this paper, we target at finding semantically related entity nodes in the subgraph to improve the efficiency of graph reasoning with KG. We propose a grounding-pruning-reasoning pipeline to prune noisy nodes, remarkably reducing the computation cost and memory usage while also obtaining decent subgraph representation. In detail, the pruning module first scores concept nodes based on the dependency distance between matched spans and then prunes the nodes according to score ranks. To facilitate the evaluation of pruned subgraphs, we also propose a graph attention network (GAT) based module to reason with the subgraph data. Experimental results on CommonsenseQA and OpenBookQA demonstrate the effectiveness of our method.

Extensive fine-tuning on Large Language Models does not always yield better results. Oftentimes, models tend to get better at imitating one form of data without gaining greater reasoning ability and may even end up losing some intelligence. Here I introduce EvoMerge, a systematic approach to large language model training and merging. Leveraging model merging for weight crossover and fine-tuning for weight mutation, EvoMerge establishes an evolutionary process aimed at pushing models beyond the limits of conventional fine-tuning.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司