A simple graph on $n$ vertices may contain a lot of maximum cliques. But how many can it potentially contain? We will define prime and composite graphs, and we will show that if $n \ge 15$, then the grpahs with the maximum number of maximum cliques have to be composite. Moreover, we will show an edge bound from which we will prove that if any factor of a composite graph has $\omega(G_i) \ge 5$, then it cannot have the maximum number of maximum cliques. Using this we will show that the graph that contains $3^{\lfloor n/3 \rfloor}c$ maximum cliques has the most number of maximum cliques on $n$ vertices, where $c\in\{1,\frac{4}{3},2\}$, depending on $n \text{ mod } 3$.
We consider the success probability of the $L_0$-regularized box-constrained Babai point, which is a suboptimal solution to the $L_0$-regularized box-constrained integer least squares problem and can be used for MIMO detection. First, we derive formulas for the success probability of both $L_0$-regularized and unregularized box-constrained Babai points. Then we investigate the properties of the $L_0$-regularized box-constrained Babai point, including the optimality of the regularization parameter, the monotonicity of its success probability, and the monotonicity of the ratio of the two success probabilities. A bound on the success probability of the $L_0$-regularized Babai point is derived. After that, we analyze the effect of the LLL-P permutation strategy on the success probability of the $L_0$-regularized Babai point. Then we propose some success probability based column permutation strategies to increase the success probability of the $L_0$-regularized box-constrained Babai point. Finally, we present numerical tests to confirm our theoretical results and to show the advantage of the $L_0$ regularization and the effectiveness of the proposed column permutation algorithms compared to existing strategies.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
We analyze the optimized adaptive importance sampler (OAIS) for performing Monte Carlo integration with general proposals. We leverage a classical result which shows that the bias and the mean-squared error (MSE) of the importance sampling scales with the $\chi^2$-divergence between the target and the proposal and develop a scheme which performs global optimization of $\chi^2$-divergence. While it is known that this quantity is convex for exponential family proposals, the case of the general proposals has been an open problem. We close this gap by utilizing the nonasymptotic bounds for stochastic gradient Langevin dynamics (SGLD) for the global optimization of $\chi^2$-divergence and derive nonasymptotic bounds for the MSE by leveraging recent results from non-convex optimization literature. The resulting AIS schemes have explicit theoretical guarantees that are uniform-in-time.
We derive bounds on the moduli of the eigenvalues of special type of matrix rational functions using the following techniques/methods: (1) the Bauer-Fike theorem on an associated block matrix of the given matrix rational function, (2) by associating a real rational function, along with Rouch$\text{\'e}$ theorem for the matrix rational function and (3) by a numerical radius inequality for a block matrix for the matrix rational function. These bounds are compared when the coefficients are unitary matrices. Numerical examples are given to illustrate the results obtained.
The notion of an e-value has been recently proposed as a possible alternative to critical regions and p-values in statistical hypothesis testing. In this paper we consider testing the nonparametric hypothesis of symmetry, introduce analogues for e-values of three popular nonparametric tests, define an analogue for e-values of Pitman's asymptotic relative efficiency, and apply it to the three nonparametric tests. We discuss limitations of our simple definition of asymptotic relative efficiency and list directions of further research.
We consider the community detection problem in a sparse $q$-uniform hypergraph $G$, assuming that $G$ is generated according to the Hypergraph Stochastic Block Model (HSBM). We prove that a spectral method based on the non-backtracking operator for hypergraphs works with high probability down to the generalized Kesten-Stigum detection threshold conjectured by Angelini et al. (2015). We characterize the spectrum of the non-backtracking operator for the sparse HSBM and provide an efficient dimension reduction procedure using the Ihara-Bass formula for hypergraphs. As a result, community detection for the sparse HSBM on $n$ vertices can be reduced to an eigenvector problem of a $2n\times 2n$ non-normal matrix constructed from the adjacency matrix and the degree matrix of the hypergraph. To the best of our knowledge, this is the first provable and efficient spectral algorithm that achieves the conjectured threshold for HSBMs with $r$ blocks generated according to a general symmetric probability tensor.
This paper aims to front with dimensionality reduction in regression setting when the predictors are a mixture of functional variable and high-dimensional vector. A flexible model, combining both sparse linear ideas together with semiparametrics, is proposed. A wide scope of asymptotic results is provided: this covers as well rates of convergence of the estimators as asymptotic behaviour of the variable selection procedure. Practical issues are analysed through finite sample simulated experiments while an application to Tecator's data illustrates the usefulness of our methodology.
In this work, a Generalized Finite Difference (GFD) scheme is presented for effectively computing the numerical solution of a parabolic-elliptic system modelling a bacterial strain with density-suppressed motility. The GFD method is a meshless method known for its simplicity for solving non-linear boundary value problems over irregular geometries. The paper first introduces the basic elements of the GFD method, and then an explicit-implicit scheme is derived. The convergence of the method is proven under a bound for the time step, and an algorithm is provided for its computational implementation. Finally, some examples are considered comparing the results obtained with a regular mesh and an irregular cloud of points.
In this paper we consider a dynamic Erd\H{o}s-R\'enyi graph in which edges, according to an alternating renewal process, change from present to absent and vice versa. The objective is to estimate the on- and off-time distributions while only observing the aggregate number of edges. This inverse problem is dealt with, in a parametric context, by setting up an estimator based on the method of moments. We provide conditions under which the estimator is asymptotically normal, and we point out how the corresponding covariance matrix can be identified. It is also demonstrated how to adapt the estimation procedure if alternative subgraph counts are observed, such as the number of wedges or triangles.
We present a pipeline for unbiased and robust multimodal registration of neuroimaging modalities with minimal pre-processing. While typical multimodal studies need to use multiple independent processing pipelines, with diverse options and hyperparameters, we propose a single and structured framework to jointly process different image modalities. The use of state-of-the-art learning-based techniques enables fast inferences, which makes the presented method suitable for large-scale and/or multi-cohort datasets with a diverse number of modalities per session. The pipeline currently works with structural MRI, resting state fMRI and amyloid PET images. We show the predictive power of the derived biomarkers using in a case-control study and study the cross-modal relationship between different image modalities. The code can be found in https: //github.com/acasamitjana/JUMP.