亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the widespread attention and application of artificial intelligence (AI) and blockchain technologies, privacy protection techniques arising from their integration are of notable significance. In addition to protecting privacy of individuals, these techniques also guarantee security and dependability of data. This paper initially presents an overview of AI and blockchain, summarizing their combination along with derived privacy protection technologies. It then explores specific application scenarios in data encryption, de-identification, multi-tier distributed ledgers, and k-anonymity methods. Moreover, the paper evaluates five critical aspects of AI-blockchain-integration privacy protection systems, including authorization management, access control, data protection, network security, and scalability. Furthermore, it analyzes the deficiencies and their actual cause, offering corresponding suggestions. This research also classifies and summarizes privacy protection techniques based on AI-blockchain application scenarios and technical schemes. In conclusion, this paper outlines the future directions of privacy protection technologies emerging from AI and blockchain integration, including enhancing efficiency and security to achieve a more comprehensive privacy protection of privacy.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

In today's world, many technologically advanced countries have realized that real power lies not in physical strength but in educated minds. As a result, every country has embarked on restructuring its education system to meet the demands of technology. As a country in the midst of these developments, we cannot remain indifferent to this transformation in education. In the Information Age of the 21st century, rapid access to information is crucial for the development of individuals and societies. To take our place among the knowledge societies in a world moving rapidly towards globalization, we must closely follow technological innovations and meet the requirements of technology. This can be achieved by providing learning opportunities to anyone interested in acquiring education in their area of interest. This study focuses on the advantages and disadvantages of internet-based learning compared to traditional teaching methods, the importance of computer usage in internet-based learning, negative factors affecting internet-based learning, and the necessary recommendations for addressing these issues. In today's world, it is impossible to talk about education without technology or technology without education.

Blockchain technology transformed the digital sphere by providing a transparent, secure, and decentralized platform for data security across a range of industries, including cryptocurrencies and supply chain management. Blockchain's integrity and dependability have been jeopardized by the rising number of security threats, which have attracted cybercriminals as a target. By summarizing suggested fixes, this research aims to offer a thorough analysis of mitigating blockchain attacks. The objectives of the paper include identifying weak blockchain attacks, evaluating various solutions, and determining how effective and effective they are at preventing these attacks. The study also highlights how crucial it is to take into account the particular needs of every blockchain application. This study provides beneficial perspectives and insights for blockchain researchers and practitioners, making it essential reading for those interested in current and future trends in blockchain security research.

The prevalence of violence in daily life poses significant threats to individuals' physical and mental well-being. Using surveillance cameras in public spaces has proven effective in proactively deterring and preventing such incidents. However, concerns regarding privacy invasion have emerged due to their widespread deployment. To address the problem, we leverage Dynamic Vision Sensors (DVS) cameras to detect violent incidents and preserve privacy since it captures pixel brightness variations instead of static imagery. We introduce the Bullying10K dataset, encompassing various actions, complex movements, and occlusions from real-life scenarios. It provides three benchmarks for evaluating different tasks: action recognition, temporal action localization, and pose estimation. With 10,000 event segments, totaling 12 billion events and 255 GB of data, Bullying10K contributes significantly by balancing violence detection and personal privacy persevering. And it also poses a challenge to the neuromorphic dataset. It will serve as a valuable resource for training and developing privacy-protecting video systems. The Bullying10K opens new possibilities for innovative approaches in these domains.

End-users are concerned about protecting the privacy of their sensitive personal data that are generated while working on information systems. This extends to both the data they actively provide including personal identification in exchange for products and services as well as its related metadata such as unnecessary access to their location. This is when certain privacy-preserving technologies come into a place where Internet Engineering Task Force (IETF) plays a major role in incorporating such technologies at the fundamental level. Thus, this paper offers an overview of the privacy-preserving mechanisms for layer 3 (i.e. IP) and above that are currently under standardization at the IETF. This includes encrypted DNS at layer 5 classified as DNS-over-TLS (DoT), DNS-over-HTTPS (DoH), and DNS-over-QUIC (DoQ) where the underlying technologies like QUIC belong to layer 4. Followed by that, we discuss Privacy Pass Protocol and its application in generating Private Access Tokens and Passkeys to replace passwords for authentication at the application layer (i.e. end-user devices). Lastly, to protect user privacy at the IP level, Private Relays and MASQUE are discussed. This aims to make designers, implementers, and users of the Internet aware of privacy-related design choices.

The term "metaverse", a three-dimensional virtual universe similar to the real realm, has always been full of imagination since it was put forward in the 1990s. Recently, it is possible to realize the metaverse with the continuous emergence and progress of various technologies, and thus it has attracted extensive attention again. It may bring a lot of benefits to human society such as reducing discrimination, eliminating individual differences, and socializing. However, everything has security and privacy concerns, which is no exception for the metaverse. In this article, we firstly analyze the concept of the metaverse and propose that it is a super virtual-reality (VR) ecosystem compared with other VR technologies. Then, we carefully analyze and elaborate on possible security and privacy concerns from four perspectives: user information, communication, scenario, and goods, and immediately, the potential solutions are correspondingly put forward. Meanwhile, we propose the need to take advantage of the new buckets effect to comprehensively address security and privacy concerns from a philosophical perspective, which hopefully will bring some progress to the metaverse community.

Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

北京阿比特科技有限公司