Simulation studies play a key role in the validation of causal inference methods. The simulation results are reliable only if the study is designed according to the promised operational conditions of the method-in-test. Still, many causal inference literature tend to design over-restricted or misspecified studies. In this paper, we elaborate on the problem of improper simulation design for causal methods and compile a list of desiderata for an effective simulation framework. We then introduce partially randomized causal simulation (PARCS), a simulation framework that meets those desiderata. PARCS synthesizes data based on graphical causal models and a wide range of adjustable parameters. There is a legible mapping from usual causal assumptions to the parameters, thus, users can identify and specify the subset of related parameters and randomize the remaining ones to generate a range of complying data-generating processes for their causal method. The result is a more comprehensive and inclusive empirical investigation for causal claims. Using PARCS, we reproduce and extend the simulation studies of two well-known causal discovery and missing data analysis papers to emphasize the necessity of a proper simulation design. Our results show that those papers would have improved and extended the findings, had they used PARCS for simulation. The framework is implemented as a Python package, too. By discussing the comprehensiveness and transparency of PARCS, we encourage causal inference researchers to utilize it as a standard tool for future works.
Cartesian differential categories come equipped with a differential combinator which axiomatizes the fundamental properties of the total derivative from differential calculus. The objective of this paper is to understand when the Kleisli category of a monad is a Cartesian differential category. We introduce Cartesian differential monads, which are monads whose Kleisli category is a Cartesian differential category by way of lifting the differential combinator from the base category. Examples of Cartesian differential monads include tangent bundle monads and reader monads. We give a precise characterization of Cartesian differential categories which are Kleisli categories of Cartesian differential monads using abstract Kleisli categories. We also show that the Eilenberg-Moore category of a Cartesian differential monad is a tangent category.
Deep learning vulnerability detection has shown promising results in recent years. However, an important challenge that still blocks it from being very useful in practice is that the model is not robust under perturbation and it cannot generalize well over the out-of-distribution (OOD) data, e.g., applying a trained model to unseen projects in real world. We hypothesize that this is because the model learned non-robust features, e.g., variable names, that have spurious correlations with labels. When the perturbed and OOD datasets no longer have the same spurious features, the model prediction fails. To address the challenge, in this paper, we introduced causality into deep learning vulnerability detection. Our approach CausalVul consists of two phases. First, we designed novel perturbations to discover spurious features that the model may use to make predictions. Second, we applied the causal learning algorithms, specifically, do-calculus, on top of existing deep learning models to systematically remove the use of spurious features and thus promote causal based prediction. Our results show that CausalVul consistently improved the model accuracy, robustness and OOD performance for all the state-of-the-art models and datasets we experimented. To the best of our knowledge, this is the first work that introduces do calculus based causal learning to software engineering models and shows it's indeed useful for improving the model accuracy, robustness and generalization. Our replication package is located at //figshare.com/s/0ffda320dcb96c249ef2.
Inferring causal relationships as directed acyclic graphs (DAGs) is an important but challenging problem. Differentiable Causal Discovery (DCD) is a promising approach to this problem, framing the search as a continuous optimization. But existing DCD methods are numerically unstable, with poor performance beyond tens of variables. In this paper, we propose Stable Differentiable Causal Discovery (SDCD), a new method that improves previous DCD methods in two ways: (1) It employs an alternative constraint for acyclicity; this constraint is more stable, both theoretically and empirically, and fast to compute. (2) It uses a training procedure tailored for sparse causal graphs, which are common in real-world scenarios. We first derive SDCD and prove its stability and correctness. We then evaluate it with both observational and interventional data and on both small-scale and large-scale settings. We find that SDCD outperforms existing methods in both convergence speed and accuracy and can scale to thousands of variables.
While Gaussian processes are a mainstay for various engineering and scientific applications, the uncertainty estimates don't satisfy frequentist guarantees and can be miscalibrated in practice. State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance, which yields confidence intervals that are potentially too coarse. To remedy this, we present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance but using a different set of hyperparameters chosen to satisfy an empirical calibration constraint. This results in a calibration approach that is considerably more flexible than existing approaches, which we optimize to yield tight predictive quantiles. Our approach is shown to yield a calibrated model under reasonable assumptions. Furthermore, it outperforms existing approaches in sharpness when employed for calibrated regression.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
As a field of AI, Machine Reasoning (MR) uses largely symbolic means to formalize and emulate abstract reasoning. Studies in early MR have notably started inquiries into Explainable AI (XAI) -- arguably one of the biggest concerns today for the AI community. Work on explainable MR as well as on MR approaches to explainability in other areas of AI has continued ever since. It is especially potent in modern MR branches, such as argumentation, constraint and logic programming, planning. We hereby aim to provide a selective overview of MR explainability techniques and studies in hopes that insights from this long track of research will complement well the current XAI landscape. This document reports our work in-progress on MR explainability.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.