亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Re-identification(ReID) aims at matching objects in surveillance cameras with different viewpoints. It's developing very fast, but there is no processing method for the ReID task in multiple scenarios at this stage. However, this dose happen all the time in real life, such as the security scenarios. This paper explores a new scenario of Re-identification, which differs in perspective, background, and pose(walking or cycling). Obviously, ordinary ReID processing methods cannot handle this scenario well. As we all konw, the best way to deal with that it is to introduce image datasets in this scanario, But this one is very expensive. To solve this problem, this paper proposes a simple and effective way to generate images in some new scenario, which is named Copy and Paste method based on Pose(CPP). The CPP is a method based on key point detection, using copy and paste, to composite a new semantic image dataset in two different semantic image datasets. Such as, we can use pedestrians and bicycles to generate some images that shows the same person rides on different bicycles. The CPP is suitable for ReID tasks in new scenarios and it outperforms state-of-the-art on the original datasets in original ReID tasks. Specifically, it can also have better generalization performance for third-party public datasets. Code and Datasets which composited by the CPP will be available in the future.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Person re-identification (ReID) is a challenging crosscamera retrieval task to identify pedestrians. Many complex network structures are proposed recently and many of them concentrate on multi-branch features to achieve high performance. However, they are too heavy-weight to deploy in realworld applications. Additionally, pedestrian images are often captured by different surveillance cameras, so the varied lights, perspectives and resolutions result in inevitable multi-camera domain gaps for ReID. To address these issues, this paper proposes ATCN, a simple but effective angular triplet loss-based camera network, which is able to achieve compelling performance with only global features. In ATCN, a novel angular distance is introduced to learn a more discriminative feature representation in the embedding space. Meanwhile, a lightweight camera network is designed to transfer global features to more discriminative features. ATCN is designed to be simple and flexible so it can be easily deployed in practice. The experiment results on various benchmark datasets show that ATCN outperforms many SOTA approaches.

Video-based person re-identification (Re-ID) aims at matching the video tracklets with cropped video frames for identifying the pedestrians under different cameras. However, there exists severe spatial and temporal misalignment for those cropped tracklets due to the imperfect detection and tracking results generated with obsolete methods. To address this issue, we present a simple re-Detect and Link (DL) module which can effectively reduce those unexpected noise through applying the deep learning-based detection and tracking on the cropped tracklets. Furthermore, we introduce an improved model called Coarse-to-Fine Axial-Attention Network (CF-AAN). Based on the typical Non-local Network, we replace the non-local module with three 1-D position-sensitive axial attentions, in addition to our proposed coarse-to-fine structure. With the developed CF-AAN, compared to the original non-local operation, we can not only significantly reduce the computation cost but also obtain the state-of-the-art performance (91.3% in rank-1 and 86.5% in mAP) on the large-scale MARS dataset. Meanwhile, by simply adopting our DL module for data alignment, to our surprise, several baseline models can achieve better or comparable results with the current state-of-the-arts. Besides, we discover the errors not only for the identity labels of tracklets but also for the evaluation protocol for the test data of MARS. We hope that our work can help the community for the further development of invariant representation without the hassle of the spatial and temporal alignment and dataset noise. The code, corrected labels, evaluation protocol, and the aligned data will be available at //github.com/jackie840129/CF-AAN.

The task of person re-identification (ReID) has attracted growing attention in recent years with improving performance but lack of focus on real-world applications. Most state of the art methods use large pre-trained models, e.g., ResNet50 (~25M parameters), as their backbone, which makes it tedious to explore different architecture modifications. In this study, we focus on small-sized randomly initialized models which enable us to easily introduce network and training modifications suitable for person ReID public datasets and real-world setups. We show the robustness of our network and training improvements by outperforming state of the art results in terms of rank-1 accuracy and mAP on Market1501 (96.2, 89.7) and DukeMTMC (89.8, 80.3) with only 6.4M parameters and without using re-ranking. Finally, we show the applicability of the proposed ReID network for multi-object tracking.

Person re-identification (ReID) is to identify pedestrians observed from different camera views based on visual appearance. It is a challenging task due to large pose variations, complex background clutters and severe occlusions. Recently, human pose estimation by predicting joint locations was largely improved in accuracy. It is reasonable to use pose estimation results for handling pose variations and background clutters, and such attempts have obtained great improvement in ReID performance. However, we argue that the pose information was not well utilized and hasn't yet been fully exploited for person ReID. In this work, we introduce a novel framework called Attention-Aware Compositional Network (AACN) for person ReID. AACN consists of two main components: Pose-guided Part Attention (PPA) and Attention-aware Feature Composition (AFC). PPA is learned and applied to mask out undesirable background features in pedestrian feature maps. Furthermore, pose-guided visibility scores are estimated for body parts to deal with part occlusion in the proposed AFC module. Extensive experiments with ablation analysis show the effectiveness of our method, and state-of-the-art results are achieved on several public datasets, including Market-1501, CUHK03, CUHK01, SenseReID, CUHK03-NP and DukeMTMC-reID.

Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+ and Market1501. The evaluation codebase and results will be made publicly available for community use.

In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.

While attributes have been widely used for person re-identification (Re-ID) that matches the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-image person matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillance applications, remains a rarely investigated cross-modal matching problem in Person Re-ID. In this work, we present this challenge and employ adversarial learning to formulate the attribute-image cross-modal person Re-ID model. By imposing the regularization on the semantic consistency constraint across modalities, the adversarial learning enables generating image-analogous concepts for query attributes and getting it matched with image in both global level and semantic ID level. We conducted extensive experiments on three attribute datasets and demonstrated that the adversarial modelling is so far the most effective for the attributeimage cross-modal person Re-ID problem.

In this paper, we propose a novel method called AlignedReID that extracts a global feature which is jointly learned with local features. Global feature learning benefits greatly from local feature learning, which performs an alignment/matching by calculating the shortest path between two sets of local features, without requiring extra supervision. After the joint learning, we only keep the global feature to compute the similarities between images. Our method achieves rank-1 accuracy of 94.4% on Market1501 and 97.8% on CUHK03, outperforming state-of-the-art methods by a large margin. We also evaluate human-level performance and demonstrate that our method is the first to surpass human-level performance on Market1501 and CUHK03, two widely used Person ReID datasets.

Partial person re-identification (re-id) is a challenging problem, where only some partial observations (images) of persons are available for matching. However, few studies have offered a flexible solution of how to identify an arbitrary patch of a person image. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate certain-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, hence, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that of coupled images from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, it achieves competitive results on a benchmark person dataset Market1501 with the Rank-1 accuracy being 83.58%.

In this paper, a new video classification methodology is proposed which can be applied in both first and third person videos. The main idea behind the proposed strategy is to capture complementary information of appearance and motion efficiently by performing two independent streams on the videos. The first stream is aimed to capture long-term motions from shorter ones by keeping track of how elements in optical flow images have changed over time. Optical flow images are described by pre-trained networks that have been trained on large scale image datasets. A set of multi-channel time series are obtained by aligning descriptions beside each other. For extracting motion features from these time series, PoT representation method plus a novel pooling operator is followed due to several advantages. The second stream is accomplished to extract appearance features which are vital in the case of video classification. The proposed method has been evaluated on both first and third-person datasets and results present that the proposed methodology reaches the state of the art successfully.

北京阿比特科技有限公司