For a random variable $X$, we are interested in the blind extraction of its finest mutual independence pattern $\mu ( X )$. We introduce a specific kind of independence that we call dichotomic. If $\Delta ( X )$ stands for the set of all patterns of dichotomic independence that hold for $X$, we show that $\mu ( X )$ can be obtained as the intersection of all elements of $\Delta ( X )$. We then propose a method to estimate $\Delta ( X )$ when the data are independent and identically (i.i.d.) realizations of a multivariate normal distribution. If $\hat{\Delta} ( X )$ is the estimated set of valid patterns of dichotomic independence, we estimate $\mu ( X )$ as the intersection of all patterns of $\hat{\Delta} ( X )$. The method is tested on simulated data, showing its advantages and limits. We also consider an application to a toy example as well as to experimental data.
Bayesian linear mixed-effects models and Bayesian ANOVA are increasingly being used in the cognitive sciences to perform null hypothesis tests, where a null hypothesis that an effect is zero is compared with an alternative hypothesis that the effect exists and is different from zero. While software tools for Bayes factor null hypothesis tests are easily accessible, how to specify the data and the model correctly is often not clear. In Bayesian approaches, many authors use data aggregation at the by-subject level and estimate Bayes factors on aggregated data. Here, we use simulation-based calibration for model inference applied to several example experimental designs to demonstrate that, as with frequentist analysis, such null hypothesis tests on aggregated data can be problematic in Bayesian analysis. Specifically, when random slope variances differ (i.e., violated sphericity assumption), Bayes factors are too conservative for contrasts where the variance is small and they are too liberal for contrasts where the variance is large. Running Bayesian ANOVA on aggregated data can - if the sphericity assumption is violated - likewise lead to biased Bayes factor results. Moreover, Bayes factors for by-subject aggregated data are biased (too liberal) when random item slope variance is present but ignored in the analysis. These problems can be circumvented or reduced by running Bayesian linear mixed-effects models on non-aggregated data such as on individual trials, and by explicitly modeling the full random effects structure. Reproducible code is available from \url{//osf.io/mjf47/}.
Venkatachala on the one hand, and Avdispahi\'c & Zejnulahi on the other, both studiied integer sequences with an unusual sum property defined in a greedy way, and proved many results about them. However, their proofs were rather lengthy and required numerous cases. In this paper, I provide a different approach, via finite automata, that can prove the same results (and more) in a simple, unified way. Instead of case analysis, we use a decision procedure implemented in the free software Walnut. Using these ideas, we can prove a conjecture of Quet and find connections between Quet's sequence and the "married" functions of Hofstadter.
In classical logic, "P implies Q" is equivalent to "not-P or Q". It is well known that the equivalence is problematic. Actually, from "P implies Q", "not-P or Q" can be inferred ("Implication-to-disjunction" is valid), while from "not-P or Q", "P implies Q" cannot be inferred in general ("Disjunction-to-implication" is not valid), so the equivalence between them is invalid. This work aims to remove exactly the incorrect Disjunction-to-implication from classical logic (CL). The paper proposes a logical system (IRL), which has the properties (1) adding Disjunction-to-implication to IRL is simply CL, and (2) Disjunction-to-implication is independent of IRL, i.e. either Disjunction-to-implication or its negation cannot be derived in IRL. In other words, IRL is just the sub-system of CL with Disjunction-to-implication being exactly removed.
Given a property (graph class) $\Pi$, a graph $G$, and an integer $k$, the \emph{$\Pi$-completion} problem consists in deciding whether we can turn $G$ into a graph with the property $\Pi$ by adding at most $k$ edges to $G$. The $\Pi$-completion problem is known to be NP-hard for general graphs when $\Pi$ is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem %when $\Pi$ is the class of proper interval graphs (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.
We study the problem of reconstructing the Faber--Schauder coefficients of a continuous function $f$ from discrete observations of its antiderivative $F$. Our approach starts with formulating this problem through piecewise quadratic spline interpolation. We then provide a closed-form solution and an in-depth error analysis. These results lead to some surprising observations, which also throw new light on the classical topic of quadratic spline interpolation itself: They show that the well-known instabilities of this method can be located exclusively within the final generation of estimated Faber--Schauder coefficients, which suffer from non-locality and strong dependence on the initial value and the given data. By contrast, all other Faber--Schauder coefficients depend only locally on the data, are independent of the initial value, and admit uniform error bounds. We thus conclude that a robust and well-behaved estimator for our problem can be obtained by simply dropping the final-generation coefficients from the estimated Faber--Schauder coefficients.
L. Klebanov proved the following theorem. Let $\xi_1, \dots, \xi_n$ be independent random variables. Consider linear forms $L_1=a_1\xi_1+\cdots+a_n\xi_n,$ $L_2=b_1\xi_1+\cdots+b_n\xi_n,$ $L_3=c_1\xi_1+\cdots+c_n\xi_n,$ $L_4=d_1\xi_1+\cdots+d_n\xi_n,$ where the coefficients $a_j, b_j, c_j, d_j$ are real numbers. If the random vectors $(L_1,L_2)$ and $(L_3,L_4)$ are identically distributed, then all $\xi_i$ for which $a_id_j-b_ic_j\neq 0$ for all $j=\overline{1,n}$ are Gaussian random variables. The present article is devoted to an analog of the Klebanov theorem in the case when random variables take values in a locally compact Abelian group and the coefficients of the linear forms are integers.
Given a surface $\Sigma$ equipped with a set $P$ of marked points, we consider the triangulations of $\Sigma$ with vertex set $P$. The flip-graph of $\Sigma$ whose vertices are these triangulations, and whose edges correspond to flipping arcs appears in the study of moduli spaces and mapping class groups. We consider the number of geodesics in the flip-graph of $\Sigma$ between two triangulations as a function of their distance. We show that this number grows exponentially provided the surface has enough topology, and that in the remaining cases the growth is polynomial.
In this manuscript we derive the optimal out-of-sample causal predictor for a linear system that has been observed in $k+1$ within-sample environments. In this model we consider $k$ shifted environments and one observational environment. Each environment corresponds to a linear structural equation model (SEM) with its own shift and noise vector, both in $L^2$. The strength of the shifts can be put in a certain order, and we may therefore speak of all shifts that are less or equally strong than a given shift. We consider the space of all shifts are $\gamma$ times less or equally strong than any weighted average of the observed shift vectors with weights on the unit sphere. For each $\beta\in\mathbb{R}^p$ we show that the supremum of the risk functions $R_{\tilde{A}}(\beta)$ over $\tilde{A}\in C^\gamma$ has a worst-risk decomposition into a (positive) linear combination of risk functions, depending on $\gamma$. We then define the causal regularizer, $\beta_\gamma$, as the argument $\beta$ that minimizes this risk. The main result of the paper is that this regularizer can be consistently estimated with a plug-in estimator outside a set of zero Lebesgue measure in the parameter space. A practical obstacle for such estimation is that it involves the solution of a general degree polynomial which cannot be done explicitly. Therefore we also prove that an approximate plug-in estimator using the bisection method is also consistent. An interesting by-product of the proof of the main result is that the plug-in estimation of the argmin of the maxima of a finite set of quadratic risk functions is consistent outside a set of zero Lebesgue measure in the parameter space.
Given $n$ independent and identically distributed observations and measuring the value of obtaining an additional observation in terms of Le Cam's notion of deficiency between experiments, we show for certain types of non-parametric experiments that the value of an additional observation decreases at a rate of $1/\sqrt{n}$. This is distinct from the known typical decrease at a rate of $1/n$ for parametric experiments and the non-decreasing value in the case of very large experiments. In particular, the rate of $1/\sqrt{n}$ holds for the experiment given by observing samples from a density about which we know only that it is bounded from below by some fixed constant. Thus there exists an experiment where the value of additional observations tends to zero but for which no estimator that is consistent (in total variation distance) exists.
Given a target distribution $\pi$ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal{X}$, we develop three structured and inter-related approaches to generate new reversiblizations from $L$. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi$-reversible generators under suitable information divergences such as $f$-divergences. With different choices of functions $f$, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex $*$-conjugate in the study of $f$-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.