亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a $\sf K$ user interference network with general connectivity, described by a matrix $\mat{N}$, and general message flows, described by a matrix $\mat{M}$. Previous studies have demonstrated that the standard interference scheme (IA) might not be optimal for networks with sparse connectivity. In this paper, we formalize a general IA coding scheme and an intuitive number-filling puzzle for given $\mat{M}$ and $\mat{N}$ in a way that the score of the solution to the puzzle determines the optimum sum degrees that can be achieved by the IA scheme. A solution to the puzzle is proposed for a general class of symmetric channels, and it is shown that this solution leads to significantly higher $\SDoF$ than the standard IA scheme.

相關內容

We study the sample complexity of learning an $\epsilon$-optimal policy in an average-reward Markov decision process (MDP) under a generative model. For weakly communicating MDPs, we establish the complexity bound $\tilde{O}(SA\frac{H}{\epsilon^2})$, where $H$ is the span of the bias function of the optimal policy and $SA$ is the cardinality of the state-action space. Our result is the first that is minimax optimal (up to log factors) in all parameters $S,A,H$ and $\epsilon$, improving on existing work that either assumes uniformly bounded mixing times for all policies or has suboptimal dependence on the parameters. We further investigate sample complexity in general (non-weakly-communicating) average-reward MDPs. We argue a new transient time parameter $B$ is necessary, establish an $\tilde{O}(SA\frac{B+H}{\epsilon^2})$ complexity bound, and prove a matching (up to log factors) minimax lower bound. Both results are based on reducing the average-reward MDP to a discounted MDP, which requires new ideas in the general setting. To establish the optimality of this reduction, we develop improved bounds for $\gamma$-discounted MDPs, showing that $\tilde{\Omega}\left(SA\frac{H}{(1-\gamma)^2\epsilon^2}\right)$ samples suffice to learn an $\epsilon$-optimal policy in weakly communicating MDPs under the regime that $\gamma\geq 1-1/H$, and $\tilde{\Omega}\left(SA\frac{B+H}{(1-\gamma)^2\epsilon^2}\right)$ samples suffice in general MDPs when $\gamma\geq 1-\frac{1}{B+H}$. Both these results circumvent the well-known lower bound of $\tilde{\Omega}\left(SA\frac{1}{(1-\gamma)^3\epsilon^2}\right)$ for arbitrary $\gamma$-discounted MDPs. Our analysis develops upper bounds on certain instance-dependent variance parameters in terms of the span and transient time parameters. The weakly communicating bounds are tighter than those based on the mixing time or diameter of the MDP and may be of broader use.

An \emph{eight-partition} of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in~$\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.

A new $H(\textrm{divdiv})$-conforming finite element is presented, which avoids the need for super-smoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and $C^0$ discontinuous Galerkin methods for the biharmonic equation are derived.

We consider the quasi-likelihood analysis for a linear regression model driven by a Student-t L\'{e}vy process with constant scale and arbitrary degrees of freedom. The model is observed at high frequency over an extending period, under which we can quantify how the sampling frequency affects estimation accuracy. In that setting, joint estimation of trend, scale, and degrees of freedom is a non-trivial problem. The bottleneck is that the Student-t distribution is not closed under convolution, making it difficult to estimate all the parameters fully based on the high-frequency time scale. To efficiently deal with the intricate nature from both theoretical and computational points of view, we propose a two-step quasi-likelihood analysis: first, we make use of the Cauchy quasi-likelihood for estimating the regression-coefficient vector and the scale parameter; then, we construct the sequence of the unit-period cumulative residuals to estimate the remaining degrees of freedom. In particular, using full data in the first step causes a problem stemming from the small-time Cauchy approximation, showing the need for data thinning.

We analyze a stochastic approximation algorithm for decision-dependent problems, wherein the data distribution used by the algorithm evolves along the iterate sequence. The primary examples of such problems appear in performative prediction and its multiplayer extensions. We show that under mild assumptions, the deviation between the average iterate of the algorithm and the solution is asymptotically normal, with a covariance that clearly decouples the effects of the gradient noise and the distributional shift. Moreover, building on the work of H\'ajek and Le Cam, we show that the asymptotic performance of the algorithm with averaging is locally minimax optimal.

We give a procedure for computing group-level $(\epsilon, \delta)$-DP guarantees for DP-SGD, when using Poisson sampling or fixed batch size sampling. Up to discretization errors in the implementation, the DP guarantees computed by this procedure are tight (assuming we release every intermediate iterate).

Optimal transport (OT) theory has reshaped the field of generative modeling: Combined with neural networks, recent \textit{Neural OT} (N-OT) solvers use OT as an inductive bias, to focus on ``thrifty'' mappings that minimize average displacement costs. This core principle has fueled the successful application of N-OT solvers to high-stakes scientific challenges, notably single-cell genomics. N-OT solvers are, however, increasingly confronted with practical challenges: while most N-OT solvers can handle squared-Euclidean costs, they must be repurposed to handle more general costs; their reliance on deterministic Monge maps as well as mass conservation constraints can easily go awry in the presence of outliers; mapping points \textit{across} heterogeneous spaces is out of their reach. While each of these challenges has been explored independently, we propose a new framework that can handle, natively, all of these needs. The \textit{generative entropic neural OT} (GENOT) framework models the conditional distribution $\pi_\varepsilon(\*y|\*x)$ of an optimal \textit{entropic} coupling $\pi_\varepsilon$, using conditional flow matching. GENOT is generative, and can transport points \textit{across} spaces, guided by sample-based, unbalanced solutions to the Gromov-Wasserstein problem, that can use any cost. We showcase our approach on both synthetic and single-cell datasets, using GENOT to model cell development, predict cellular responses, and translate between data modalities.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司