亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing studies analyzing electromagnetic field (EMF) exposure in wireless networks have primarily considered downlink (DL) communications. In the uplink (UL), the EMF exposure caused by the user's smartphone is usually the only considered source of radiation, thereby ignoring contributions caused by other active neighboring devices. In addition, the network coverage and EMF exposure are typically analyzed independently for both the UL and DL, while a joint analysis would be necessary to fully understand the network performance. This paper aims at bridging the resulting gaps by presenting a comprehensive stochastic geometry framework including the above aspects. The proposed topology features base stations (BS) modeled via a homogeneous Poisson point process as well as a user process of type II (with users uniformly distributed in the Voronoi cell of each BS). In addition to the UL to DL exposure ratio, we derive joint probability metrics considering the UL and DL coverage and EMF exposure. These metrics are evaluated in two scenarios considering BS and/or user densifications. Our numerical results highlight the existence of optimal node densities maximizing these joint probabilities.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The World Wide Web's connectivity is greatly attributed to the HTTP protocol, with HTTP messages offering informative header fields that appeal to disciplines like web security and privacy, especially concerning web tracking. Despite existing research employing HTTP/S request messages to identify web trackers, HTTP/S response headers are often overlooked. This study endeavors to design effective machine learning classifiers for web tracker detection using HTTP/S response headers. Data from the Chrome, Firefox, and Brave browsers, obtained through the traffic monitoring browser extension T.EX, serves as our data set. Eleven supervised models were trained on Chrome data and tested across all browsers. The results demonstrated high accuracy, F1-score, precision, recall, and minimal log-loss error for Chrome and Firefox, but subpar performance on Brave, potentially due to its distinct data distribution and feature set. The research suggests that these classifiers are viable for detecting web trackers in Chrome and Firefox. However, real-world application testing remains pending, and the distinction between tracker types and broader label sources could be explored in future studies.

UMBRELLA is a large-scale, open-access Internet of Things (IoT) ecosystem incorporating over 200 multi-sensor multi-wireless nodes, 20 collaborative robots, and edge-intelligence-enabled devices. This paper provides a guide to the implemented and prospective artificial intelligence (AI) capabilities of UMBRELLA in real-world IoT systems. Four existing UMBRELLA applications are presented in detail: 1) An automated streetlight monitoring for detecting issues and triggering maintenance alerts; 2) A Digital twin of building environments providing enhanced air quality sensing with reduced cost; 3) A large-scale Federated Learning framework for reducing communication overhead; and 4) An intrusion detection for containerised applications identifying malicious activities. Additionally, the potential of UMBRELLA is outlined for future smart city and multi-robot crowdsensing applications enhanced by semantic communications and multi-agent planning. Finally, to realise the above use-cases we discuss the need for a tailored MLOps platform to automate UMBRELLA model pipelines and establish trust.

The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width $w^*_{\min}=\max(d_x,d_y)$, where $d_x$ and $d_y$ are the dimensions of the input and output, respectively. Recently, \cite{cai2022achieve} shows that a leaky-ReLU NN with this critical width can achieve UAP for $L^p$ functions on a compact domain ${K}$, \emph{i.e.,} the UAP for $L^p({K},\mathbb{R}^{d_y})$. This paper examines a uniform UAP for the function class $C({K},\mathbb{R}^{d_y})$ and gives the exact minimum width of the leaky-ReLU NN as $w_{\min}=\max(d_x,d_y)+\Delta (d_x, d_y)$, where $\Delta (d_x, d_y)$ is the additional dimensions for approximating continuous functions with diffeomorphisms via embedding. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.

Despite the basic premise that next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native, to date, most existing efforts remain either qualitative or incremental extensions to existing "AI for wireless" paradigms. Indeed, creating AI-native wireless networks faces significant technical challenges due to the limitations of data-driven, training-intensive AI. These limitations include the black-box nature of the AI models, their curve-fitting nature, which can limit their ability to reason and adapt, their reliance on large amounts of training data, and the energy inefficiency of large neural networks. In response to these limitations, this article presents a comprehensive, forward-looking vision that addresses these shortcomings by introducing a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning. Causal reasoning, founded on causal discovery, causal representation learning, and causal inference, can help build explainable, reasoning-aware, and sustainable wireless networks. Towards fulfilling this vision, we first highlight several wireless networking challenges that can be addressed by causal discovery and representation, including ultra-reliable beamforming for terahertz (THz) systems, near-accurate physical twin modeling for digital twins, training data augmentation, and semantic communication. We showcase how incorporating causal discovery can assist in achieving dynamic adaptability, resilience, and cognition in addressing these challenges. Furthermore, we outline potential frameworks that leverage causal inference to achieve the overarching objectives of future-generation networks, including intent management, dynamic adaptability, human-level cognition, reasoning, and the critical element of time sensitivity.

Recent advances in solving ordinary differential equations (ODEs) with neural networks have been remarkable. Neural networks excel at serving as trial functions and approximating solutions within functional spaces, aided by gradient backpropagation algorithms. However, challenges remain in solving complex ODEs, including high-order and nonlinear cases, emphasizing the need for improved efficiency and effectiveness. Traditional methods have typically relied on established knowledge integration to improve problem-solving efficiency. In contrast, this study takes a different approach by introducing a new neural network architecture for constructing trial functions, known as ratio net. This architecture draws inspiration from rational fraction polynomial approximation functions, specifically the Pade approximant. Through empirical trials, it demonstrated that the proposed method exhibits higher efficiency compared to existing approaches, including polynomial-based and multilayer perceptron (MLP) neural network-based methods. The ratio net holds promise for advancing the efficiency and effectiveness of solving differential equations.

RRAM crossbars have been studied to construct in-memory accelerators for neural network applications due to their in-situ computing capability. However, prior RRAM-based accelerators show efficiency degradation when executing the popular attention models. We observed that the frequent softmax operations arise as the efficiency bottleneck and also are insensitive to computing precision. Thus, we propose STAR, which boosts the computing efficiency with an efficient RRAM-based softmax engine and a fine-grained global pipeline for the attention models. Specifically, STAR exploits the versatility and flexibility of RRAM crossbars to trade off the model accuracy and hardware efficiency. The experimental results evaluated on several datasets show STAR achieves up to 30.63x and 1.31x computing efficiency improvements over the GPU and the state-of-the-art RRAM-based attention accelerators, respectively.

Space-Air-Ground Integrated Networks (SAGINs), which incorporate space and aerial networks with terrestrial wireless systems, are vital enablers of the emerging sixth-generation (6G) wireless networks. Besides bringing significant benefits to various applications and services, SAGINs are envisioned to extend high-speed broadband coverage to remote areas, such as small towns or mining sites, or areas where terrestrial infrastructure cannot reach, such as airplanes or maritime use cases. However, due to the limited power and storage resources, as well as other constraints introduced by the design of terrestrial networks, SAGINs must be intelligently configured and controlled to satisfy the envisioned requirements. Meanwhile, Artificial Intelligence (AI) is another critical enabler of 6G. Due to massive amounts of available data, AI has been leveraged to address pressing challenges of current and future wireless networks. By adding AI and facilitating the decision-making and prediction procedures, SAGINs can effectively adapt to their surrounding environment, thus enhancing the performance of various metrics. In this work, we aim to investigate the interplay of AI and SAGINs by providing a holistic overview of state-of-the-art research in AI-enabled SAGINs. Specifically, we present a comprehensive overview of some potential applications of AI in SAGINs. We also cover open issues in employing AI and detail the contributions of SAGINs in the development of AI. Finally, we highlight some limitations of the existing research works and outline potential future research directions.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

北京阿比特科技有限公司