亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text detection in natural scenes has been a significant and active research subject in computer vision and document analysis because of its wide range of applications as evidenced by the emergence of the Robust Reading Competition. One of the algorithms which has good text detection performance in the said competition is the Character Region Awareness for Text Detection (CRAFT). Employing the ICDAR 2013 dataset, this study investigates the impact of automatic image classification and blind deconvolution as image pre-processing steps to further enhance the text detection performance of CRAFT. The proposed technique automatically classifies the scene images into two categories, blurry and non-blurry, by utilizing of a Laplacian operator with 100 as threshold. Prior to applying the CRAFT algorithm, images that are categorized as blurry are further pre-processed using blind deconvolution to reduce the blur. The results revealed that the proposed method significantly enhanced the detection performance of CRAFT, as demonstrated by its IoU h-mean of 94.47% compared to the original 91.42% h-mean of CRAFT and this even outperformed the top-ranked SenseTime, whose h-mean is 93.62%.

相關內容

The Internet of Things (IoT) faces tremendous security challenges. Machine learning models can be used to tackle the growing number of cyber-attack variations targeting IoT systems, but the increasing threat posed by adversarial attacks restates the need for reliable defense strategies. This work describes the types of constraints required for an adversarial cyber-attack example to be realistic and proposes a methodology for a trustworthy adversarial robustness analysis with a realistic adversarial evasion attack vector. The proposed methodology was used to evaluate three supervised algorithms, Random Forest (RF), Extreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LGBM), and one unsupervised algorithm, Isolation Forest (IFOR). Constrained adversarial examples were generated with the Adaptative Perturbation Pattern Method (A2PM), and evasion attacks were performed against models created with regular and adversarial training. Even though RF was the least affected in binary classification, XGB consistently achieved the highest accuracy in multi-class classification. The obtained results evidence the inherent susceptibility of tree-based algorithms and ensembles to adversarial evasion attacks and demonstrates the benefits of adversarial training and a security by design approach for a more robust IoT network intrusion detection.

Many deep learning tasks require annotations that are too time consuming for human operators, resulting in small dataset sizes. This is especially true for dense regression problems such as crowd counting which requires the location of every person in the image to be annotated. Techniques such as data augmentation and synthetic data generation based on simulations can help in such cases. In this paper, we introduce PromptMix, a method for artificially boosting the size of existing datasets, that can be used to improve the performance of lightweight networks. First, synthetic images are generated in an end-to-end data-driven manner, where text prompts are extracted from existing datasets via an image captioning deep network, and subsequently introduced to text-to-image diffusion models. The generated images are then annotated using one or more high-performing deep networks, and mixed with the real dataset for training the lightweight network. By extensive experiments on five datasets and two tasks, we show that PromptMix can significantly increase the performance of lightweight networks by up to 26%.

Test sets are an integral part of evaluating models and gauging progress in object recognition, and more broadly in computer vision and AI. Existing test sets for object recognition, however, suffer from shortcomings such as bias towards the ImageNet characteristics and idiosyncrasies (e.g., ImageNet-V2), being limited to certain types of stimuli (e.g., indoor scenes in ObjectNet), and underestimating the model performance (e.g., ImageNet-A). To mitigate these problems, we introduce a new test set, called D2O, which is sufficiently different from existing test sets. Images are a mix of generated images as well as images crawled from the web. They are diverse, unmodified, and representative of real-world scenarios and cause state-of-the-art models to misclassify them with high confidence. To emphasize generalization, our dataset by design does not come paired with a training set. It contains 8,060 images spread across 36 categories, out of which 29 appear in ImageNet. The best Top-1 accuracy on our dataset is around 60% which is much lower than 91% best Top-1 accuracy on ImageNet. We find that popular vision APIs perform very poorly in detecting objects over D2O categories such as ``faces'', ``cars'', and ``cats''. Our dataset also comes with a ``miscellaneous'' category, over which we test the image tagging models. Overall, our investigations demonstrate that the D2O test set contain a mix of images with varied levels of difficulty and is predictive of the average-case performance of models. It can challenge object recognition models for years to come and can spur more research in this fundamental area.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotation-sensitive features. The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on three oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17 and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.

北京阿比特科技有限公司