We extract a core principle underlying seemingly different fundamental distributed settings, showing sparsity awareness may induce faster algorithms for problems in these settings. To leverage this, we establish a new framework by developing an intermediate auxiliary model weak enough to be simulated in the CONGEST model given low mixing time, as well as in the recently introduced HYBRID model. We prove that despite imposing harsh restrictions, this artificial model allows balancing massive data transfers with high bandwidth utilization. We exemplify the power of our methods, by deriving shortest-paths algorithms improving upon the state-of-the-art. Specifically, we show the following for graphs of $n$ nodes: A $(3+\epsilon)$ approximation for weighted APSP in $(n^{1/2}+n/\delta)\tau_{mix}\cdot 2^{O(\sqrt\log n)}$ rounds in the CONGEST model, where $\delta$ is the minimum degree of the graph and $\tau_{mix}$ is its mixing time. For graphs with $\delta=\tau_{mix}\cdot 2^{\omega(\sqrt\log n)}$, this takes $o(n)$ rounds, despite the $\Omega(n)$ lower bound for general graphs [Nanongkai, STOC'14]. An $(n^{7/6}/m^{1/2}+n^2/m)\cdot\tau_{mix}\cdot 2^{O(\sqrt\log n)}$-round exact SSSP algorithm in the CONGNEST model, for graphs with $m$ edges and a mixing time of $\tau_{mix}$. This improves upon the algorithm of [Chechik and Mukhtar, PODC'20] for significant ranges of values of $m$ and $\tau_{mix}$. A CONGESTED CLIQUE simulation in the CONGEST model improving upon the state-of-the-art simulation of [Ghaffari, Kuhn, and SU, PODC'17] by a factor proportional to the average degree in the graph. An $\tilde O(n^{5/17}/\epsilon^9)$-round algorithm for a $(1+\epsilon)$ approximation for SSSP in the HYBRID model. The only previous $o(n^{1/3})$ round algorithm for distance approximations in this model is for a much larger factor [Augustine, Hinnenthal, Kuhn, Scheideler, Schneider, SODA'20].
We derive minimax testing errors in a distributed framework where the data is split over multiple machines and their communication to a central machine is limited to $b$ bits. We investigate both the $d$- and infinite-dimensional signal detection problem under Gaussian white noise. We also derive distributed testing algorithms reaching the theoretical lower bounds. Our results show that distributed testing is subject to fundamentally different phenomena that are not observed in distributed estimation. Among our findings, we show that testing protocols that have access to shared randomness can perform strictly better in some regimes than those that do not. Furthermore, we show that consistent nonparametric distributed testing is always possible, even with as little as $1$-bit of communication and the corresponding test outperforms the best local test using only the information available at a single local machine.
We extend the recently introduced framework of metric distortion to multiwinner voting. In this framework, $n$ agents and $m$ alternatives are located in an underlying metric space. The exact distances between agents and alternatives are unknown. Instead, each agent provides a ranking of the alternatives, ordered from the closest to the farthest. Typically, the goal is to select a single alternative that approximately minimizes the total distance from the agents, and the worst-case approximation ratio is termed distortion. In the case of multiwinner voting, the goal is to select a committee of $k$ alternatives that (approximately) minimizes the total cost to all agents. We consider the scenario where the cost of an agent for a committee is her distance from the $q$-th closest alternative in the committee. We reveal a surprising trichotomy on the distortion of multiwinner voting rules in terms of $k$ and $q$: The distortion is unbounded when $q \leq k/3$, asymptotically linear in the number of agents when $k/3 < q \leq k/2$, and constant when $q > k/2$.
More than 70% of cloud computing is paid for but sits idle. A large fraction of these idle compute are cheap CPUs with few cores that are not utilized during the less busy hours. This paper aims to enable those CPU cycles to train heavyweight AI models. Our goal is against mainstream frameworks, which focus on leveraging expensive specialized ultra-high bandwidth interconnect to address the communication bottleneck in distributed neural network training. This paper presents a distributed model-parallel training framework that enables training large neural networks on small CPU clusters with low Internet bandwidth. We build upon the adaptive sparse training framework introduced by the SLIDE algorithm. By carefully deploying sparsity over distributed nodes, we demonstrate several orders of magnitude faster model parallel training than Horovod, the main engine behind most commercial software. We show that with reduced communication, due to sparsity, we can train close to a billion parameter model on simple 4-16 core CPU nodes connected by basic low bandwidth interconnect. Moreover, the training time is at par with some of the best hardware accelerators.
Second-order optimization methods are among the most widely used optimization approaches for convex optimization problems, and have recently been used to optimize non-convex optimization problems such as deep learning models. The widely used second-order optimization methods such as quasi-Newton methods generally provide curvature information by approximating the Hessian using the secant equation. However, the secant equation becomes insipid in approximating the Newton step owing to its use of the first-order derivatives. In this study, we propose an approximate Newton sketch-based stochastic optimization algorithm for large-scale empirical risk minimization. Specifically, we compute a partial column Hessian of size ($d\times m$) with $m\ll d$ randomly selected variables, then use the \emph{Nystr\"om method} to better approximate the full Hessian matrix. To further reduce the computational complexity per iteration, we directly compute the update step ($\Delta\boldsymbol{w}$) without computing and storing the full Hessian or its inverse. We then integrate our approximated Hessian with stochastic gradient descent and stochastic variance-reduced gradient methods. The results of numerical experiments on both convex and non-convex functions show that the proposed approach was able to obtain a better approximation of Newton\textquotesingle s method, exhibiting performance competitive with that of state-of-the-art first-order and stochastic quasi-Newton methods. Furthermore, we provide a theoretical convergence analysis for convex functions.
One of the biggest challenges in Federated Learning (FL) is that client devices often have drastically different computation and communication resources for local updates. To this end, recent research efforts have focused on training heterogeneous local models obtained by pruning a shared global model. Despite empirical success, theoretical guarantees on convergence remain an open question. In this paper, we present a unifying framework for heterogeneous FL algorithms with {\em arbitrary} adaptive online model pruning and provide a general convergence analysis. In particular, we prove that under certain sufficient conditions and on both IID and non-IID data, these algorithms converges to a stationary point of standard FL for general smooth cost functions, with a convergence rate of $O(\frac{1}{\sqrt{Q}})$. Moreover, we illuminate two key factors impacting convergence: pruning-induced noise and minimum coverage index, advocating a joint design of local pruning masks for efficient training.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.
Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required. Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at //github.com/sambaranban/ONE.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.