Recent advancements in artificial intelligence have propelled the capabilities of Large Language Models, yet their ability to mimic nuanced human reasoning remains limited. This paper introduces a novel conceptual enhancement to LLMs, termed the Artificial Neuron, designed to significantly bolster cognitive processing by integrating external memory systems. This enhancement mimics neurobiological processes, facilitating advanced reasoning and learning through a dynamic feedback loop mechanism. We propose a unique framework wherein each LLM interaction specifically in solving complex math word problems and common sense reasoning tasks is recorded and analyzed. Incorrect responses are refined using a higher capacity LLM or human in the loop corrections, and both the query and the enhanced response are stored in a vector database, structured much like neuronal synaptic connections. This Artificial Neuron thus serves as an external memory aid, allowing the LLM to reference past interactions and apply learned reasoning strategies to new problems. Our experimental setup involves training with the GSM8K dataset for initial model response generation, followed by systematic refinements through feedback loops. Subsequent testing demonstrated a significant improvement in accuracy and efficiency, underscoring the potential of external memory systems to advance LLMs beyond current limitations. This approach not only enhances the LLM's problem solving precision but also reduces computational redundancy, paving the way for more sophisticated applications of artificial intelligence in cognitive tasks. This paper details the methodology, implementation, and implications of the Artificial Neuron model, offering a transformative perspective on enhancing machine intelligence.
We consider the problem of estimating the Optimized Certainty Equivalent (OCE) risk from independent and identically distributed (i.i.d.) samples. For the classic sample average approximation (SAA) of OCE, we derive mean-squared error as well as concentration bounds (assuming sub-Gaussianity). Further, we analyze an efficient stochastic approximation-based OCE estimator, and derive finite sample bounds for the same. To show the applicability of our bounds, we consider a risk-aware bandit problem, with OCE as the risk. For this problem, we derive bound on the probability of mis-identification. Finally, we conduct numerical experiments to validate the theoretical findings.
In the realm of Artificial Intelligence (AI), the importance of Explainable Artificial Intelligence (XAI) is increasingly recognized, particularly as AI models become more integral to our lives. One notable single-instance XAI approach is counterfactual explanation, which aids users in comprehending a model's decisions and offers guidance on altering these decisions. Specifically in the context of image classification models, effective image counterfactual explanations can significantly enhance user understanding. This paper introduces a novel method for computing feature importance within the feature space of a black-box model. By employing information fusion techniques, our method maximizes the use of data to address feature counterfactual explanations in the feature space. Subsequently, we utilize an image generation model to transform these feature counterfactual explanations into image counterfactual explanations. Our experiments demonstrate that the counterfactual explanations generated by our method closely resemble the original images in both pixel and feature spaces. Additionally, our method outperforms established baselines, achieving impressive experimental results.
Large Language Models (LLMs) have demonstrated considerable cross-lingual alignment and generalization ability. Current research primarily focuses on improving LLMs' cross-lingual generalization capabilities. However, there is still a lack of research on the intrinsic mechanisms of how LLMs achieve cross-lingual alignment. From the perspective of region partitioning, this paper conducts several investigations on the linguistic competence of LLMs. We discover a core region in LLMs that corresponds to linguistic competence, accounting for approximately 1% of the total model parameters. Removing this core region by setting parameters to zero results in a significant performance decrease across 30 different languages. Furthermore, this core region exhibits significant dimensional dependence, perturbations to even a single parameter on specific dimensions leading to a loss of linguistic competence. Moreover, we discover that distinct monolingual regions exist for different languages, and disruption to these specific regions substantially reduces the LLMs' proficiency in those corresponding languages. Our research also indicates that freezing the core linguistic region during further pre-training can mitigate the issue of catastrophic forgetting (CF), a common phenomenon observed during further pre-training of LLMs. Overall, exploring the LLMs' functional regions provides insights into the foundation of their intelligence.
In the field of human intelligence, officers use an alphanumeric scale, known as the Admiralty System, to rate the credibility of messages and the reliability of their sources (NATO AJP-2.1, 2016). During this evaluation, they are expected to estimate the credibility and reliability dimensions independently of each other (NATO STANAG, 2003). However, empirical results show that officers perceive these dimensions as strongly correlated (Baker et al., 1968). More precisely, they consider credibility as playing the leading role over reliability, the importance of which is only secondary (Samet, 1975). In this paper, we present a formal evaluative procedure, called L(intel), in line with these findings. We adapt dynamic belief revision to make credibility the main dimension of evaluation and introduce dynamic operators to update credibility ratings with the source's reliability. In addition to being empirically sound, we show that L(intel) provides an effective procedure to classify intelligence messages along the descriptive taxonomy presented in Icard (2023).
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks. Traditional approaches often depend on meticulously designed prompts, high-quality examples, or additional reward models for in-context learning, supervised fine-tuning, or RLHF. Reinforcement learning (RL) presents a dynamic alternative for LLMs to overcome these dependencies by engaging directly with task-specific environments. Nonetheless, it faces significant hurdles: 1) instability stemming from the exponentially vast action space requiring exploration; 2) challenges in assigning token-level credit based on action-level reward signals, resulting in discord between maximizing rewards and accurately modeling corpus data. In response to these challenges, we introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level. At the heart of ETPO is our novel per-token soft Bellman update, designed to harmonize the RL process with the principles of language modeling. This methodology decomposes the Q-function update from a coarse action-level view to a more granular token-level perspective, backed by theoretical proof of optimization consistency. Crucially, this decomposition renders linear time complexity in action exploration. We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks; results underline ETPO's potential as a robust method for refining the interactive decision-making capabilities of language agents. For a more detailed preliminary work describing our motivation for token-level decomposition and applying it in PPO methods, please refer to arXiv:2405.15821.
Large Language Models (LLMs) are increasingly integrated into critical decision-making processes, such as loan approvals and visa applications, where inherent biases can lead to discriminatory outcomes. In this paper, we examine the nuanced relationship between demographic attributes and socioeconomic biases in LLMs, a crucial yet understudied area of fairness in LLMs. We introduce a novel dataset of one million English sentences to systematically quantify socioeconomic biases across various demographic groups. Our findings reveal pervasive socioeconomic biases in both established models such as GPT-2 and state-of-the-art models like Llama 2 and Falcon. We demonstrate that these biases are significantly amplified when considering intersectionality, with LLMs exhibiting a remarkable capacity to extract multiple demographic attributes from names and then correlate them with specific socioeconomic biases. This research highlights the urgent necessity for proactive and robust bias mitigation techniques to safeguard against discriminatory outcomes when deploying these powerful models in critical real-world applications.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.