We provide a fine classification of bisimilarities between states of possibly different labelled Markov processes (LMP). We show that a bisimilarity relation proposed by Panangaden that uses direct sums coincides with "event bisimilarity" from his joint work with Danos, Desharnais, and Laviolette. We also extend Giorgio Bacci's notions of bisimilarity between two different processes to the case of nondeterministic LMP and generalize the game characterization of state bisimilarity by Clerc et al. for the latter.
Several subjective proposals have been made for interpreting the strength of evidence in likelihood ratios and Bayes factors. I identify a more objective scaling by modelling the effect of evidence on belief. The resulting scale with base 3.73 aligns with previous proposals and may partly explain intuitions.
With the growing demand of mineral consumption, the management of the mining waste is crucial. Cemented paste backfill (CPB) is one of the techniques developed by the mining industry to fill the voids generated by the excavation of underground spaces. The CPB process is the subject of various studies aimed at optimizing its implementation in the field. In this article, we focus on the modelling of the backfill phase where it has been shown in [Vigneaux et al., Cem. Concr. Res. 164 (2023) 107038] that a viscoplastic lubrication model can be used to describe CPB experiments. The aim here is to propose an accelerated method for performing the parameters' estimation of the properties of the paste (typically its rheological properties), with an inverse problem procedure based on observed height profiles of the paste. The inversion procedure is based on a metamodel built from an initial partial differential equation model, thanks to a Polynomial Chaos Expansion coupled with a Principal Component Analysis.
The categorical Gini covariance is a dependence measure between a numerical variable and a categorical variable. The Gini covariance measures dependence by quantifying the difference between the conditional and unconditional distributional functions. A value of zero for the categorical Gini covariance implies independence of the numerical variable and the categorical variable. We propose a non-parametric test for testing the independence between a numerical and categorical variable using the categorical Gini covariance. We used the theory of U-statistics to find the test statistics and study the properties. The test has an asymptotic normal distribution. As the implementation of a normal-based test is difficult, we develop a jackknife empirical likelihood (JEL) ratio test for testing independence. Extensive Monte Carlo simulation studies are carried out to validate the performance of the proposed JEL-based test. We illustrate the test procedure using real a data set.
We propose a new concept of lifts of reversible diffusion processes and show that various well-known non-reversible Markov processes arising in applications are lifts in this sense of simple reversible diffusions. Furthermore, we introduce a concept of non-asymptotic relaxation times and show that these can at most be reduced by a square root through lifting, generalising a related result in discrete time. Finally, we demonstrate how the recently developed approach to quantitative hypocoercivity based on space-time Poincar\'e inequalities can be rephrased and simplified in the language of lifts and how it can be applied to find optimal lifts.
Modality discrepancies have perpetually posed significant challenges within the realm of Automated Audio Captioning (AAC) and across all multi-modal domains. Facilitating models in comprehending text information plays a pivotal role in establishing a seamless connection between the two modalities of text and audio. While recent research has focused on closing the gap between these two modalities through contrastive learning, it is challenging to bridge the difference between both modalities using only simple contrastive loss. This paper introduces Enhance Depth of Text Comprehension (EDTC), which enhances the model's understanding of text information from three different perspectives. First, we propose a novel fusion module, FUSER, which aims to extract shared semantic information from different audio features through feature fusion. We then introduced TRANSLATOR, a novel alignment module designed to align audio features and text features along the tensor level. Finally, the weights are updated by adding momentum to the twin structure so that the model can learn information about both modalities at the same time. The resulting method achieves state-of-the-art performance on AudioCaps datasets and demonstrates results comparable to the state-of-the-art on Clotho datasets.
Stochastic Approximation (SA) was introduced in the early 1950's and has been an active area of research for several decades. While the initial focus was on statistical questions, it was seen to have applications to signal processing, convex optimisation. %Over the last decade, there has been a revival of interest in SA as In later years SA has found application in Reinforced Learning (RL) and led to revival of interest. While bulk of the literature is on SA for the case when the observations are from a finite dimensional Euclidian space, there has been interest in extending the same to infinite dimension. Extension to Hilbert spaces is relatively easier to do, but this is not so when we come to a Banach space - since in the case of a Banach space, even {\em law of large numbers} is not true in general. We consider some cases where approximation works in a Banach space. Our framework includes case when the Banach space $\Bb$ is $\Cb([0,1],\R^d)$, as well as $\L^1([0,1],\R^d)$, the two cases which do not even have the Radon-Nikodym property.
Principal component analysis (PCA) is a longstanding and well-studied approach for dimension reduction. It rests upon the assumption that the underlying signal in the data has low rank, and thus can be well-summarized using a small number of dimensions. The output of PCA is typically represented using a scree plot, which displays the proportion of variance explained (PVE) by each principal component. While the PVE is extensively reported in routine data analyses, to the best of our knowledge the notion of inference on the PVE remains unexplored. In this paper, we consider inference on the PVE. We first introduce a new population quantity for the PVE with respect to an unknown matrix mean. Critically, our interest lies in the PVE of the sample principal components (as opposed to unobserved population principal components); thus, the population PVE that we introduce is defined conditional on the sample singular vectors. We show that it is possible to conduct inference, in the sense of confidence intervals, p-values, and point estimates, on this population quantity. Furthermore, we can conduct valid inference on the PVE of a subset of the principal components, even when the subset is selected using a data-driven approach such as the elbow rule. We demonstrate the proposed approach in simulation and in an application to a gene expression dataset.
The Laplace eigenvalue problem on circular sectors has eigenfunctions with corner singularities. Standard methods may produce suboptimal approximation results. To address this issue, a novel numerical algorithm that enhances standard isogeometric analysis is proposed in this paper by using a single-patch graded mesh refinement scheme. Numerical tests demonstrate optimal convergence rates for both the eigenvalues and eigenfunctions. Furthermore, the results show that smooth splines possess a superior approximation constant compared to their $C^0$-continuous counterparts for the lower part of the Laplace spectrum. This is an extension of previous findings about excellent spectral approximation properties of smooth splines on rectangular domains to circular sectors. In addition, graded meshes prove to be particularly advantageous for an accurate approximation of a limited number of eigenvalues. The novel algorithm applied here has a drawback in the singularity of the isogeometric parameterization. It results in some basis functions not belonging to the solution space of the corresponding weak problem, which is considered a variational crime. However, the approach proves to be robust. Finally, a hierarchical mesh structure is presented to avoid anisotropic elements, omit redundant degrees of freedom and keep the number of basis functions contributing to the variational crime constant, independent of the mesh size. Numerical results validate the effectiveness of hierarchical mesh grading for the simulation of eigenfunctions with and without corner singularities.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.