In this letter, we investigate a new generalized double Pareto based on off-grid sparse Bayesian learning (GDPOGSBL) approach to improve the performance of direction of arrival (DOA) estimation in underdetermined scenarios. The method aims to enhance the sparsity of source signal by utilizing the generalized double Pareto (GDP) prior. Firstly, we employ a first-order linear Taylor expansion to model the real array manifold matrix, and Bayesian inference is utilized to calculate the off-grid error, which mitigates the grid dictionary mismatch problem in underdetermined scenarios. Secondly, an innovative grid refinement method is introduced, treating grid points as iterative parameters to minimize the modeling error between the source and grid points. The numerical simulation results verify the superiority of the proposed strategy, especially when dealing with a coarse grid and few snapshots.
In this paper, we present a guide to the foundations of learning Dynamic Bayesian Networks (DBNs) from data in the form of multiple samples of trajectories for some length of time. We present the formalism for a generic as well as a set of common types of DBNs for particular variable distributions. We present the analytical form of the models, with a comprehensive discussion on the interdependence between structure and weights in a DBN model and their implications for learning. Next, we give a broad overview of learning methods and describe and categorize them based on the most important statistical features, and how they treat the interplay between learning structure and weights. We give the analytical form of the likelihood and Bayesian score functions, emphasizing the distinction from the static case. We discuss functions used in optimization to enforce structural requirements. We briefly discuss more complex extensions and representations. Finally we present a set of comparisons in different settings for various distinct but representative algorithms across the variants.
In this paper, we study the zero-error capacity of channels with memory, which are represented by graphs. We provide a method to construct code for any graph with one edge, thereby determining a lower bound on its zero-error capacity. Moreover, this code can achieve zero-error capacity when the symbols in a vertex with degree one are the same. We further apply our method to the one-edge graphs representing the binary channels with two memories. There are 28 possible graphs, which can be organized into 11 categories based on their symmetries. The code constructed by our method is proved to achieve the zero-error capacity for all these graphs except for the two graphs in Case 11.
Kolmogorov-Arnold Networks (KANs) have very recently been introduced into the world of machine learning, quickly capturing the attention of the entire community. However, KANs have mostly been tested for approximating complex functions or processing synthetic data, while a test on real-world tabular datasets is currently lacking. In this paper, we present a benchmarking study comparing KANs and Multi-Layer Perceptrons (MLPs) on tabular datasets. The study evaluates task performance and training times. From the results obtained on the various datasets, KANs demonstrate superior or comparable accuracy and F1 scores, excelling particularly in datasets with numerous instances, suggesting robust handling of complex data. We also highlight that this performance improvement of KANs comes with a higher computational cost when compared to MLPs of comparable sizes.
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and yet it receives disproportionally low attention from the research community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.
This paper introduces DiffMix, a new self-supervised learning (SSL) pre-training framework that combines real and synthetic images. Unlike traditional SSL methods that predominantly use real images, DiffMix uses a variant of Stable Diffusion to replace an augmented instance of a real image, facilitating the learning of cross real-synthetic image representations. The key insight is that while SSL methods trained solely on synthetic images underperform compared to those trained on real images, a blended training approach using both real and synthetic images leads to more robust and adaptable representations. Experiments demonstrate that DiffMix enhances the SSL methods SimCLR, BarlowTwins, and DINO, across various robustness datasets and domain transfer tasks. DiffMix boosts SimCLR's accuracy on ImageNet-1K by 4.56\%. These results challenge the notion that high-quality real images are crucial for SSL pre-training by showing that lower quality synthetic images can also produce strong representations. DiffMix also reduces the need for image augmentations in SSL, offering new optimization strategies.
In this paper, we study the offline RL problem with linear function approximation. Our main structural assumption is that the MDP has low inherent Bellman error, which stipulates that linear value functions have linear Bellman backups with respect to the greedy policy. This assumption is natural in that it is essentially the minimal assumption required for value iteration to succeed. We give a computationally efficient algorithm which succeeds under a single-policy coverage condition on the dataset, namely which outputs a policy whose value is at least that of any policy which is well-covered by the dataset. Even in the setting when the inherent Bellman error is 0 (termed linear Bellman completeness), our algorithm yields the first known guarantee under single-policy coverage. In the setting of positive inherent Bellman error ${\varepsilon_{\mathrm{BE}}} > 0$, we show that the suboptimality error of our algorithm scales with $\sqrt{\varepsilon_{\mathrm{BE}}}$. Furthermore, we prove that the scaling of the suboptimality with $\sqrt{\varepsilon_{\mathrm{BE}}}$ cannot be improved for any algorithm. Our lower bound stands in contrast to many other settings in reinforcement learning with misspecification, where one can typically obtain performance that degrades linearly with the misspecification error.
Federated learning (FL) enables multiple parties to collaboratively fine-tune an large language model (LLM) without the need of direct data sharing. Ideally, by training on decentralized data that is aligned with human preferences and safety principles, federated instruction tuning can result in an LLM that could behave in a helpful and safe manner. In this paper, we for the first time reveal the vulnerability of safety alignment in FedIT by proposing a simple, stealthy, yet effective safety attack method. Specifically, the malicious clients could automatically generate attack data without involving manual efforts and attack the FedIT system by training their local LLMs on such attack data. Unfortunately, this proposed safety attack not only can compromise the safety alignment of LLM trained via FedIT, but also can not be effectively defended against by many existing FL defense methods. Targeting this, we further propose a post-hoc defense method, which could rely on a fully automated pipeline: generation of defense data and further fine-tuning of the LLM. Extensive experiments show that our safety attack method can significantly compromise the LLM's safety alignment (e.g., reduce safety rate by 70\%), which can not be effectively defended by existing defense methods (at most 4\% absolute improvement), while our safety defense method can significantly enhance the attacked LLM's safety alignment (at most 69\% absolute improvement).
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.